• Title/Summary/Keyword: Microbial metabolite

Search Result 83, Processing Time 0.031 seconds

Studies on Antibiotic Producers of Korean Soil Microbes (IV) -Isolation and Antibiotic Activity of Streptomyces Strain DMC-42- (한국(韓國) 토양균(土壤菌)중 항생물질(抗生物質) 생성균(生成菌)에 관한 연구(硏究) 제 4 보(第4報) -스트렙토마이세스속(屬) 균주(菌株) DMC-42의 분리(分離) 및 그 항균작용(抗菌作用)-)

  • Kim, Hwa-Ki;Kim, Jung-Woo;Kim, Ha-Won;Choi, Eung-Chil;Kim, Byong-Kak
    • The Korean Journal of Mycology
    • /
    • v.13 no.2
    • /
    • pp.89-97
    • /
    • 1985
  • To find antibacterial strains of the soil microorganisms in Korea, they were isolated from the soil samples of different locations and screened for antibacterial activity against several standard microorganisms. An isolate among them had antibacterial activities against gram-positive and gram-negative bacteria. The examination of its morphological, biochemical, cultural and physiological characteristics according to the International Streptomyces Project methods showed that it belongs to the genus Streptomyces. This strain appears to be a novel strain when it was compared with those species of the genus which have been so far reported. The antibiotic metabolite was produced in the submerged culture of the strain. This metabolite was extracted from the culture filtrate and purified by ion-exchange column chromatography. Physico-chemical properties of the antibacterial metabolite were characterized.

  • PDF

Biotransformation of Valdecoxib by Microbial Cultures

  • Srisailam, K.;Veeresham, C.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.809-816
    • /
    • 2010
  • Microbial biotransformations can be used to predict mammalian drug metabolism. The present investigation deals with microbial biotransformation of valdecoxib using microbial cultures. Thirty-nine bacterial, fungal, and yeast cultures were used to elucidate the biotransformation pathway of valdecoxib. A number of microorganisms metabolized valdecoxib to various levels to yield nine metabolites, which were identified by HPLC-DAD and LC-MS-MS analyses. HPLC analysis of biotransformed products indicated that a majority of the metabolites are more polar than the substrate valdecoxib. Basing on LC-MS-MS analysis, the major metabolite was identified as a hydroxymethyl metabolite of valdecoxib, whereas the remaining metabolites were produced by carboxylation, demethylation, ring hydroxylation, N-acetylation, or a combination of these reactions. The hydroxymethyl and carboxylic acid metabolites were known to be produced in metabolism by mammals. From the results, it can be concluded that microbial cultures, particularly fungi, can be used to predict mammalian drug metabolism.

Flavone Biotransformation by Aspergillus niger and the Characterization of Two Newly Formed Metabolites

  • Mahmoud, Yehia A.-G.;Assawah, Suzan W.;El-Sharkawy, Saleh H.;Abdel-Salam, Amal
    • Mycobiology
    • /
    • v.36 no.2
    • /
    • pp.121-133
    • /
    • 2008
  • Aspergillus niger isolated from Allium sativum was used at large scale fermentation (150 mg flavone/200ml medium) to obtain suitable amounts of the products, efficient for identification. Then spectral analysis (UV, IR, $^1H$-NMR, $^{13}C$-NMR) and mass spectrometry were performed for the two products, which contributed to the identification process. The metabolite (1) was identified as 2'-hydroxydihydrochalcone, and the metabolite (2) was identified as 2'-hydroxyphenylmethylketone, which were more active than flavone itself. Antioxidant activities of the two isolated metabolites were tested compared with ascorbic acid. Antioxidant activity of metabolite (1) was recorded 64.58% which represented 79% of the antioxidant activity of ascorbic acid, and metabolite (2) was recorded 54.16% (67% of ascorbic acid activity). However, the antioxidant activity of flavone was recorded 37.50% which represented 46% of ascorbic acid activity. The transformed products of flavone have anti-microbial activity against Pseudomonas aeruginosa, Aspergillus flavus and Candida albicans, with MIC was recorded $250{\mu}g/ml$ for metabolite (2) against all three organism and 500, 300, and $300{\mu}g/ml$ for metabolite (1) against tested microorganisms (P. aeruginosa, Escherichia coli, Bacillus subtilis, and Klebsiella pneumonia, Fusarium moniliforme, A. flavus, Saccharomyces cerviceae, Kluveromyces lactis and C. albicans) at this order.

Metabolite Profiling and Microbial Community of Traditional Meju Show Primary and Secondary Metabolite Differences Correlated with Antioxidant Activities

  • Song, Da Hye;Chun, Byung Hee;Lee, Sunmin;Reddy, Chagam Koteswara;Jeon, Che Ok;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1697-1705
    • /
    • 2020
  • Meju, a type of fermented soybean paste, is used as a starter in the preparation of various Korean traditional soybean-based foods. In this study, we performed Illumina-MiSeq paired-end sequencing for microbial communities and mass spectrometry analysis for metabolite profiling to investigate the differences between 11 traditional meju products from different regions across Korea. Even though the bacterial and fungal communities showed remarkable variety, major genera including Bacillus, Enterococcus, Variovorax, Pediococcus, Weissella, and Aspergillus were detected in every sample of meju. The metabolite profile patterns of the 11 samples were clustered into two main groups: group I (M1-5) and group II (M6-11). The metabolite analysis indicated a relatively higher amino acid content in group I, while group II exhibited higher isoflavone, soyasaponin, and lysophospholipid contents. The bioactivity analysis proved that the ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) radical-scavenging activity was higher in group II and the FRAP (ferric reducing antioxidant power) activity was higher in group I. The correlation analysis revealed that the ABTS activity was isoflavonoid, lipid, and soyasaponin related, whereas the FRAP activity was amino acid and flavonoid related. These results suggest that the antioxidant activities of meju are critically influenced by the microbiome and metabolite dynamics.

Complete Genome Sequence of Myxococcus stipitatus KYC2006, a Myxobacterium That Affects the Growth of Photosynthetic Microorganisms

  • Junyeong Park;Hyeran Lee;Sunjin Lee;Hyesook Hyun;Hyun Gi Koh;Min-Jin Kim;Buyng Su Hwang;Bongsoo Lee
    • Microbiology and Biotechnology Letters
    • /
    • v.52 no.2
    • /
    • pp.204-207
    • /
    • 2024
  • Here, we report the whole-genome sequence of Myxococcus stipitatus KYC2006, a bacterium whose conditioned media affect the growth of photosynthetic microorganisms such as cyanobacteria and microalgae. The genome of M. stipitatus KYC2006 was assembled into a 10,311,252 bp circular genome with 68.5% of GC content, containing 7,949 protein-coding genes, 12 rRNA genes, and 79 tRNA genes. Further analysis revealed that there are 29 secondary metabolite biosynthetic gene clusters in M. stipitatus KYC2006. These results suggest that M. stipitatus KYC2006 holds a significant potential as a resource for research on the development of biocontrol agents and value-added products from photosynthetic microorganisms.

Microbiota Communities of Healthy and Bacterial Pustule Diseased Soybean

  • Kim, Da-Ran;Kim, Su-Hyeon;Lee, Su In;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.372-382
    • /
    • 2022
  • Soybean is an important source of protein and for a wide range of agricultural, food, and industrial applications. Soybean is being affected by Xanthomonas citri pv. glycines, a causal pathogen of bacterial pustule disease, result in a reduction in yield and quality. Diverse microbial communities of plants are involved in various plant stresses is known. Therefore, we designed to investigate the microbial community differentiation depending on the infection of X. citri pv. glycines. The microbial community's abundance, diversity, and similarity showed a difference between infected and non-infected soybean. Microbiota community analysis, excluding X. citri pv. glycines, revealed that Pseudomonas spp. would increase the population of the infected soybean. Results of DESeq analyses suggested that energy metabolism, secondary metabolite, and TCA cycle metabolism were actively diverse in the non-infected soybeans. Additionally, Streptomyces bacillaris S8, an endophyte microbiota member, was nominated as a key microbe in the healthy soybeans. Genome analysis of S. bacillaris S8 presented that salinomycin may be the critical antibacterial metabolite. Our findings on the composition of soybean microbiota communities and the key strain information will contribute to developing biological control strategies against X. citri pv. glycines.

Microbial Metabolism of the Environmental Estrogen Bisphenol A

  • Yim, Soon-Ho;Kim, Hyun-Jung;Lee, Ik-Soo
    • Archives of Pharmacal Research
    • /
    • v.26 no.10
    • /
    • pp.805-808
    • /
    • 2003
  • Preliminary microbial metabolism studies of bisphenol A (BPA) (1) on twenty six microorganisms have shown that Aspergillus fumigatus is capable of metabolizing BPA. Scale-up fermentation of 1 with A. fumigatus gave a metabolite (2) and its structure was established as bisphenol $A-O-{\beta}-D-glucopyranoside$ (BPAG) based on spectroscopic analyses.

Overexpression of afsR and Optimization of Metal Chloride to Improve Lomofungin Production in Streptomyces lomondensis S015

  • Wang, Wei;Wang, Huasheng;Hu, Hongbo;Peng, Huasong;Zhang, Xuehong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.672-680
    • /
    • 2015
  • As a global regulatory gene in Streptomyces, afsR can activate the biosynthesis of many secondary metabolites. The effect of afsR on the biosynthesis of a phenazine metabolite, lomofungin, was studied in Streptomyces lomondensis S015. There was a 2.5-fold increase of lomofungin production in the afsR-overexpressing strain of S. lomondensis S015 N1 compared with the wild-type strain. Meanwhile, the transcription levels of afsR and two important genes involved in the biosynthesis of lomofungin (i.e., phzC and phzE) were significantly upregulated in S. lomondensis S015 N1. The optimization of metal chlorides was investigated to further increase the production of lomofungin in the afsR-overexpressing strain. The addition of different metal chlorides to S. lomondensis S015 N1 cultivations showed that CaCl2, FeCl2, and MnCl2 led to an increase in lomofungin biosynthesis. The optimum concentrations of these metal chlorides were obtained using response surface methodology. CaCl2 (0.04 mM), FeCl2 (0.33 mM), and MnCl2 (0.38 mM) gave a maximum lomofungin production titer of 318.0 ± 10.7 mg/l, which was a 4.1-fold increase compared with that of S. lomondensis S015 N1 without the addition of a metal chloride. This work demonstrates that the biosynthesis of phenazine metabolites can be induced by afsR. The results also indicate that metal chlorides addition might be a simple and useful strategy for improving the production of other phenazine metabolites in Streptomyces.

A CRISPR/Cas9 Cleavage System for Capturing Fungal Secondary Metabolite Gene Clusters

  • Xu, Xinran;Feng, Jin;Zhang, Peng;Fan, Jie;Yin, Wen-Bing
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • More and more available fungal genome sequence data reveal a large amount of secondary metabolite (SM) biosynthetic 'dark matter' to be discovered. Heterogeneous expression is one of the most effective approaches to exploit these novel natural products, but it is limited by having to clone entire biosynthetic gene clusters (BGCs) without errors. So far, few effective technologies have been developed to manipulate the specific large DNA fragments in filamentous fungi. Here, we developed a fungal BGC-capturing system based on CRISPR/Cas9 cleavage in vitro. In our system, Cas9 protein was purified and CRISPR guide sequences in combination with in vivo yeast assembly were rationally designed. Using targeted cleavages of plasmid DNAs with linear (8.5 kb) or circular (8.5 kb and 28 kb) states, we were able to cleave the plasmids precisely, demonstrating the high efficiency of this system. Furthermore, we successfully captured the entire Nrc gene cluster from the genomic DNA of Neosartorya fischeri. Our results provide an easy and efficient approach to manipulate fungal genomic DNA based on the in vitro application of Cas9 endonuclease. Our methodology will lay a foundation for capturing entire groups of BGCs in filamentous fungi and accelerate fungal SMs mining.

Uptake of Soilmicrobial Metabolites and Allelochemicals in Plant Root System (식물의 뿌리에 의한 토양 미생물 대사산물 및 Allelochemicals의 흡수)

  • Kim, M.J.;Lee, Y.S.
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.3
    • /
    • pp.264-268
    • /
    • 1997
  • Microbial metabolites from rhizosphere soil samples mainly inhabitated by Streptomyces are selectively uptaken into plants. The culture broth of a Streptomyces strain K9301 showed a major metabolite which disappeared in the medium 24hrs after planting of seedlings. This metabolite was selectively uptaken in the rice plants as well as the wheat plants. We identified the targeted metabolite showing a strong UV-absorbing spot at Rf 0.6 on TLC to be 2-aminobenzamide.

  • PDF