• Title/Summary/Keyword: Microbial community profiling

Search Result 27, Processing Time 0.02 seconds

Microbial Community Profiling in cis- and trans-Dichloroethene Enrichment Systems Using Denaturing Gradient Gel Electrophoresis

  • Olaniran, Ademola O.;Stafford, William H.L.;Cowan, Don A.;Pillay, Dorsamy;Pillay, Balakrishna
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.560-570
    • /
    • 2007
  • The effective and accurate assessment of the total microbial community diversity is one of the primary challenges in modem microbial ecology, especially for the detection and characterization of unculturable populations and populations with a low abundance. Accordingly, this study was undertaken to investigate the diversity of the microbial community during the biodegradation of cis- and trans-dichloroethenes in soil and wastewater enrichment cultures. Community profiling using PCR targeting the l6S rRNA gene and denaturing gradient gel electrophoresis (PCR-DGGE) revealed an alteration in the bacterial community profiles with time. Exposure to cis- and trans-dichloroethenes led to the disappearance of certain genospecies that were initially observed in the untreated samples. A cluster analysis of the bacterial DGGE community profiles at various sampling times during the degradation process indicated that the community profile became stable after day 10 of the enrichment. DNA sequencing and phylogenetic analysis of selected DGGE bands revealed that the genera Acinetobacter, Pseudomonas, Bacillus, Comamonas, and Arthrobacter, plus several other important uncultured bacterial phylotypes, dominated the enrichment cultures. Thus, the identified dominant phylotypes may play an important role in the degradation of cis- and trans-dichloroethenes.

Next-generation approaches to the microbial ecology of food fermentations

  • Bokulich, Nicholas A.;Mills, David A.
    • BMB Reports
    • /
    • v.45 no.7
    • /
    • pp.377-389
    • /
    • 2012
  • Food fermentations have enhanced human health since the dawn of time and remain a prevalent means of food processing and preservation. Due to their cultural and nutritional importance, many of these foods have been studied in detail using molecular tools, leading to enhancements in quality and safety. Furthermore, recent advances in high-throughput sequencing technology are revolutionizing the study of food microbial ecology, deepening insight into complex fermentation systems. This review provides insight into novel applications of select molecular techniques, particularly next-generation sequencing technology, for analysis of microbial communities in fermented foods. We present a guideline for integrated molecular analysis of food microbial ecology and a starting point for implementing next-generation analysis of food systems.

Mucin modifies microbial composition and improves metabolic functional potential of a synthetic gut microbial ecosystem

  • Mabwi, Humphrey A.;Komba, Erick V.G.;Mwaikono, Kilaza Samson;Hitayezu, Emmanuel;Mauliasari, Intan Rizki;Jin, Jong Beom;Pan, Cheol-Ho;Cha, Kwang Hyun
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.1
    • /
    • pp.63-74
    • /
    • 2022
  • Microbial dysbiosis in the gut is associated with human diseases, and variations in mucus alter gut microbiota. Therefore, we explored the effects of mucin on the gut microbiota using a community of 19 synthetic gut microbial species. Cultivation of these species in modified Gifu anaerobic medium (GAM) supplemented with mucin before synthetic community assembly facilitated substantial growth of the Bacteroides, Akkermansia, and Clostridium genera. The results of 16S rRNA microbial relative abundance profiling revealed more of the beneficial microbes Collinsella, Bifidobacterium, Ruminococcus, and Lactobacillus. This increased acetate levels in the community cultivated with, rather than without (control), mucin. We identified differences in predicted cell function and metabolism between microbes cultivated in GAM with and without mucin. Mucin not only changed the composition of the gut microbial community, but also modulated metabolic functions, indicating that it could help to modulate microbial changes associated with human diseases.

Analysis techniques for fermented foods microbiome (발효식품의 마이크로바이옴 분석 기술)

  • Cha, In-Tae;Seo, Myung-ji
    • Food Science and Industry
    • /
    • v.50 no.1
    • /
    • pp.2-10
    • /
    • 2017
  • Human have eaten various traditional fermented foods for a numbers of million years for health benefit as well as survival. The beneficial effects of fermented foods have been resulted from complex microbial communications within the fermented foods. Therefore, the holistic approaches for individual identification and complete microbial profiling involved in their communications have been of interest to food microbiology fields. Microbiome is the ecological community of microorganisms that literally share our environments including foods as well as human body. However, due to the limitation of culture-dependent methods such as simple isolations of just culturable microorganisms, the culture-independent methods have been consistently developed, resulting in new light on the diverse non-culturable and hitherto unknown microorganisms, and even microbial communities in the fermented foods. For the culture-independent approaches, the food microbiome has been deciphered by employing various molecular analysis tools such as fluorescence in situ hybridization, quantitative PCR, and denaturing gradient gel-electrophoresis. More recently, next-generation-sequencing (NGS) platform-based microbiome analysis has been of interest, because NGS is a powerful analytical tool capable of resolving the microbiome in respect to community structures, dynamics, and activities. In this overview, the development status of analysis tools for the fermented food microbiome is covered and research trend for NGS-based food microbiome analysis is also discussed.

Application of Methodology for Microbial Community Analysis to Gas-Phase Biofilters (폐가스 처리용 바이오필터에 미생물 군집 분석 기법의 적용)

  • Lee, Eun-Hee;Park, Hyunjung;Jo, Yun-Seong;Ryu, Hee Wook;Cho, Kyung-Suk
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.147-156
    • /
    • 2010
  • There are four key factors for gas-phase biofilters; biocatalysts(microorganisms), packing materials, design/operating techniques, and diagnosis/management techniques. Biofilter performance is significantly affected by microbial community structures as well as loading conditions. The microbial studies on biofilters are mostly performed on basis of culture-dependent methods. Recently, advanced methods have been proposed to characterize the microbial community structure in environmental samples. In this study, the physiological, biochemical and molecular methods for profiling microbial communities are reviewed, and their applicability to biofilters is discussed. Community-level physiological profile is based on the utilization capability of carbon substrate by heterotrophic community in environmental samples. Phospholipid fatty acid analysis method is based on the variability of fatty acids present in cell membranes of different microorganisms. Molecular methods using DNA directly extracted from environmental samples can be divided into "partial community DNA analysis" and "whole community DNA analysis" approaches. The former approaches consist in the analysis of PCR-amplified sequence, the genes of ribosomal operon are the most commonly used sequences. These methods include PCR fragment cloning and genetic fingerprinting such as denaturing gradient gel electrophoresis, terminal-restriction fragment length polymorphism, ribosomal intergenic spacer analysis, and random amplified polymorphic DNA. The whole community DNA analysis methods are total genomic cross-DNA hybridization, thermal denaturation and reassociation of whole extracted DNA and extracted whole DNA fractionation using density gradient.

Metabolite Profiling and Microbial Community of Traditional Meju Show Primary and Secondary Metabolite Differences Correlated with Antioxidant Activities

  • Song, Da Hye;Chun, Byung Hee;Lee, Sunmin;Reddy, Chagam Koteswara;Jeon, Che Ok;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1697-1705
    • /
    • 2020
  • Meju, a type of fermented soybean paste, is used as a starter in the preparation of various Korean traditional soybean-based foods. In this study, we performed Illumina-MiSeq paired-end sequencing for microbial communities and mass spectrometry analysis for metabolite profiling to investigate the differences between 11 traditional meju products from different regions across Korea. Even though the bacterial and fungal communities showed remarkable variety, major genera including Bacillus, Enterococcus, Variovorax, Pediococcus, Weissella, and Aspergillus were detected in every sample of meju. The metabolite profile patterns of the 11 samples were clustered into two main groups: group I (M1-5) and group II (M6-11). The metabolite analysis indicated a relatively higher amino acid content in group I, while group II exhibited higher isoflavone, soyasaponin, and lysophospholipid contents. The bioactivity analysis proved that the ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) radical-scavenging activity was higher in group II and the FRAP (ferric reducing antioxidant power) activity was higher in group I. The correlation analysis revealed that the ABTS activity was isoflavonoid, lipid, and soyasaponin related, whereas the FRAP activity was amino acid and flavonoid related. These results suggest that the antioxidant activities of meju are critically influenced by the microbiome and metabolite dynamics.

A streamlined pipeline based on HmmUFOtu for microbial community profiling using 16S rRNA amplicon sequencing

  • Hyeonwoo Kim;Jiwon Kim;Ji Won Cho;Kwang-Sung Ahn;Dong-Il Park;Sangsoo Kim
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.40.1-40.11
    • /
    • 2023
  • Microbial community profiling using 16S rRNA amplicon sequencing allows for taxonomic characterization of diverse microorganisms. While amplicon sequence variant (ASV) methods are increasingly favored for their fine-grained resolution of sequence variants, they often discard substantial portions of sequencing reads during quality control, particularly in datasets with large number samples. We present a streamlined pipeline that integrates FastP for read trimming, HmmUFOtu for operational taxonomic units (OTU) clustering, Vsearch for chimera checking, and Kraken2 for taxonomic assignment. To assess the pipeline's performance, we reprocessed two published stool datasets of normal Korean populations: one with 890 and the other with 1,462 independent samples. In the first dataset, HmmUFOtu retained 93.2% of over 104 million read pairs after quality trimming, discarding chimeric or unclassifiable reads, while DADA2, a commonly used ASV method, retained only 44.6% of the reads. Nonetheless, both methods yielded qualitatively similar β-diversity plots. For the second dataset, HmmUFOtu retained 89.2% of read pairs, while DADA2 retained a mere 18.4% of the reads. HmmUFOtu, being a closed-reference clustering method, facilitates merging separately processed datasets, with shared OTUs between the two datasets exhibiting a correlation coefficient of 0.92 in total abundance (log scale). While the first two dimensions of the β-diversity plot exhibited a cohesive mixture of the two datasets, the third dimension revealed the presence of a batch effect. Our comparative evaluation of ASV and OTU methods within this streamlined pipeline provides valuable insights into their performance when processing large-scale microbial 16S rRNA amplicon sequencing data. The strengths of HmmUFOtu and its potential for dataset merging are highlighted.

Profiling Total Viable Bacteria in a Hemodialysis Water Treatment System

  • Chen, Lihua;Zhu, Xuan;Zhang, Menglu;Wang, Yuxin;Lv, Tianyu;Zhang, Shenghua;Yu, Xin
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.995-1004
    • /
    • 2017
  • Culture-dependent methods, such as heterotrophic plate counting (HPC), are usually applied to evaluate the bacteriological quality of hemodialysis water. However, these methods cannot detect the uncultured or viable but non-culturable (VBNC) bacteria, both of which may be quantitatively predominant throughout the hemodialysis water treatment system. Therefore, propidium monoazide (PMA)-qPCR associated with HPC was used together to profile the distribution of the total viable bacteria in such a system. Moreover, high-throughput sequencing of 16S rRNA gene amplicons was utilized to analyze the microbial community structure and diversity. The HPC results indicated that the total bacterial counts conformed to the standards, yet the bacteria amounts were abruptly enhanced after carbon filter treatment. Nevertheless, the bacterial counts detected by PMA-qPCR, with the highest levels of $2.14{\times}10^7copies/100ml$ in softener water, were much higher than the corresponding HPC results, which demonstrated the occurrence of numerous uncultured or VBNC bacteria among the entire system before reverse osmosis (RO). In addition, the microbial community structure was very different and the diversity was enhanced after the carbon filter. Although the diversity was minimized after RO treatment, pathogens such as Escherichia could still be detected in the RO effluent. In general, both the amounts of bacteria and the complexity of microbial community in the hemodialysis water treatment system revealed by molecular approaches were much higher than by traditional method. These results suggested the higher health risk potential for hemodialysis patients from the up-to-standard water. The treatment process could also be optimized, based on the results of this study.

Microbial Community Diversity in Anaerobic Reactors Digesting Turkey, Chicken, and Swine Wastes

  • Ziganshina, Elvira E.;Belostotskiy, Dmitry E.;Shushlyaev, Roman V.;Miluykov, Vasili A.;Vankov, Petr Y.;Ziganshin, Ayrat M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1464-1472
    • /
    • 2014
  • The microbial community structures of two continuous stirred tank reactors digesting turkey manure with pine wood shavings as well as chicken and swine manure were investigated. The reactor fed with chicken/swine wastes displayed the highest organic acids concentration (up to 15.2 g/l) and ammonia concentration (up to 3.7 g/l ammonium nitrogen) and generated a higher biogas yield (up to $366ml/g_{VS}$) compared with the reactor supplied with turkey wastes (1.5-1.8 g/l of organic acids and 1.6-1.7 g/l of ammonium levels; biogas yield was up to $195ml/g_{VS}$). The microbial community diversity was assessed using both sequencing and profiling terminal restriction fragment length polymorphisms of 16S rRNA genes. Additionally, methanogens were analyzed using methyl coenzyme M reductase alpha subunit (mcrA) genes. The bacterial community was dominated by members of unclassified Clostridiales with the prevalence of specific clostridial phylotypes in each reactor, indicating the effect of the substrate type on the community structure. Of the methanogenic archaea, methanogens of the genus Methanosarcina were found in high proportions in both reactors with specific methanosarcinas in each reactor, whereas the strict hydrogenotrophic methanogens of Methanoculleus sp. were found at significant levels only in the reactor fed with chicken/swine manure (based on the analyses of 16S rRNA gene). This suggests that among methanogenic archaea, Methanosarcina species which have different metabolic capabilities, including aceticlastic and hydrogenotrophic methanogenesis, were mainly involved in anaerobic digestion of turkey wastes.

An Overview of Different Techniques on the Microbial Community Structure, and Functional Diversity of Plant Growth Promoting Bacteria

  • Kim, Kiyoon;Islam, Rashedul;Benson, Abitha;Joe, Manoharan Melvin;Denver, Walitang;Chanratan, Mak;Chatterjee, Poulami;Kang, Yeongyeong;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.144-156
    • /
    • 2016
  • Soil is a dynamic biological system, in which it is difficult to determine the composition of microbial communities. Knowledge of microbial diversity and function in soils are limited because of the taxonomic and methodological limitations associated with studying the organisms. In this review, approaches to measure microbial diversity in soil were discussed. Research on soil microbes can be categorized as structural diversity, functional diversity and genetic diversity studies, and these include cultivation based and cultivation independent methods. Cultivation independent technique to evaluate soil structural diversity include different techniques such as Phospholipid Fatty Acids (PLFA) and Fatty Acid Methyl Ester (FAME) analysis. Carbon source utilization pattern of soil microorganisms by Community Level Physiological Profiling (CLPP), catabolic responses by Substrate Induced Respiration technique (SIR) and soil microbial enzyme activities are discussed. Genetic diversity of soil microorganisms using molecular techniques such as 16S rDNA analysis Denaturing Gradient Gel Electrophoresis (DGGE) / Temperature Gradient Gel Electrophoresis (TGGE), Terminal Restriction Fragment Length Polymorphism (T-RFLP), Single Strand Conformation Polymorphism (SSCP), Restriction Fragment Length Polymorphism (RFLP) / Amplified Ribosomal DNA Restriction Analysis (ARDRA) and Ribosomal Intergenic Spacer Analysis (RISA) are also discussed. The chapter ends with a final conclusion on the advantages and disadvantages of different techniques and advances in molecular techniques to study the soil microbial diversity.