• Title/Summary/Keyword: Microbial cellulose

Search Result 135, Processing Time 0.034 seconds

High ${\beta}$-Glucosidase Secretion in Saccharomyces cerevisiae Improves the Efficiency of Cellulase Hydrolysis and Ethanol Production in Simultaneous Saccharification and Fermentation

  • Tang, Hongting;Hou, Jin;Shen, Yu;Xu, Lili;Yang, Hui;Fang, Xu;Bao, Xiaoming
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1577-1585
    • /
    • 2013
  • Bioethanol production from lignocellulose is considered as a sustainable biofuel supply. However, the low cellulose hydrolysis efficiency limits the cellulosic ethanol production. The cellulase is strongly inhibited by the major end product cellobiose, which can be relieved by the addition of ${\beta}$-glucosidase. In this study, three ${\beta}$-glucosidases from different organisms were respectively expressed in Saccharomyces cerevisiae and the ${\beta}$-glucosidase from Saccharomycopsis fibuligera showed the best activity (5.2 U/ml). The recombinant strain with S. fibuligera ${\beta}$-glucosidase could metabolize cellobiose with a specific growth rate similar to the control strain in glucose. This recombinant strain showed higher hydrolysis efficiency in the cellulose simultaneous saccharification and fermentation, when using the Trichoderma reesei cellulase, which is short of the ${\beta}$-glucosidase activity. The final ethanol concentration was 110% (using Avicel) and 89% (using acid-pretreated corncob) higher than the control strain. These results demonstrated the effect of ${\beta}$-glucosidase secretion in the recombinant S. cerevisiae for enhancing cellulosic ethanol conversion.

Metagenomic Insight into Lignocellulose Degradation of the Thermophilic Microbial Consortium TMC7

  • Wang, Yi;Wang, Chen;Chen, Yonglun;Chen, Beibei;Guo, Peng;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1123-1133
    • /
    • 2021
  • Biodegradation is the key process involved in natural lignocellulose biotransformation and utilization. Microbial consortia represent promising candidates for applications in lignocellulose conversion strategies for biofuel production; however, cooperation among the enzymes and the labor division of microbes in the microbial consortia remains unclear. In this study, metagenomic analysis was performed to reveal the community structure and extremozyme systems of a lignocellulolytic microbial consortium, TMC7. The taxonomic affiliation of TMC7 metagenome included members of the genera Ruminiclostridium (42.85%), Thermoanaerobacterium (18.41%), Geobacillus (10.44%), unclassified_f__Bacillaceae (7.48%), Aeribacillus (2.65%), Symbiobacterium (2.47%), Desulfotomaculum (2.33%), Caldibacillus (1.56%), Clostridium (1.26%), and others (10.55%). The carbohydrate-active enzyme annotation revealed that TMC7 encoded a broad array of enzymes responsible for cellulose and hemicellulose degradation. Ten glycoside hydrolases (GHs) endoglucanase, 4 GHs exoglucanase, and 6 GHs β-glucosidase were identified for cellulose degradation; 6 GHs endo-β-1,4-xylanase, 9 GHs β-xylosidase, and 3 GHs β-mannanase were identified for degradation of the hemicellulose main chain; 6 GHs arabinofuranosidase, 2 GHs α-mannosidase, 11 GHs galactosidase, 3 GHs α-rhamnosidase, and 4 GHs α-fucosidase were identified as xylan debranching enzymes. Furthermore, by introducing a factor named as the contribution coefficient, we found that Ruminiclostridium and Thermoanaerobacterium may be the dominant contributors, whereas Symbiobacterium and Desulfotomaculum may serve as "sugar cheaters" in lignocellulose degradation by TMC7. Our findings provide mechanistic profiles of an array of enzymes that degrade complex lignocellulosic biomass in the microbial consortium TMC7 and provide a promising approach for studying the potential contribution of microbes in microbial consortia.

EFFECT OF PLANT PHENOLIC ACIDS ON CELLULOLYTIC ACTIVITY OF MIXED RUMEN POPULATIONS

  • Ushida, K.;Watase, H.;Kojima, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.1
    • /
    • pp.27-31
    • /
    • 1990
  • Influences of plant phenolic acids and their possible metabolites(non-phenolic aromatic acids involved) in the rumen on the cellulolytic activity of mixed rumen populations were examined by a simple in vitro culture technique. Initial concentrations of aromatic acids were 1, 5, 10 and 20 mM/l. All the tested aromatic acids reduced microbial cellulose digestion especially at the higher initial concentration. P-Coumaric acid, ferulic acid and cinnamic acid, those having unhydrogenated propenoic side chain were more inhibitory than were 3-phenylpropinic acid and phloretic acid, those having hydrogenated propanoic side chain. Lag-time for cellulose digestion was prolonged by former three acids by 16 h. Apparent reduction in p-coumaric acid concentration was observed at 24 h when cellulose digestion began. Volatile fatty acid productions from cellulose fermentation were shifted by former three aromatic acids to produce more acetate and less propionate. This suggests that the selection of celluloytic organisms was induced by these aromatic acids.

Molecular Cloning and Characterization of Two Major Endoglucanases from Penicillium decumbens

  • Wei, Xiao-Min;Qin, Yu-Qi;Qu, Yin-Bo
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.265-270
    • /
    • 2010
  • Two major endoglucanase genes (cel7B and cel5A) were cloned from Penicillium decumbens 114-2 using the method of modified thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR). The result of Southern blotting suggested that P. decumbens has a single copy of the cel5A gene and a single copy of the cel7B gene in its chromosomal DNA. The expression levels of cel5A and cel7B were determined by means of real-time quantitative PCR, suggesting that the two genes were coordinately expressed, and repressed by glucose and induced by cellulose. Both endoglucanase genes were expressed in Saccharomyces cerevisiae and the recombinant proteins were purified. The recombinant Cel7B and Cel5A were both optimally active at $60^{\circ}C$ and pH 4.0. The recombinant Cel7B showed more than 8-fold, 30-fold, and 5-fold higher enzyme activities toward carboxymethyl cellulose, barley $\beta$-glucan, and PASC, respectively, in comparison with that of Cel5A. However, their activities toward pNPC and Avicel showed minor differences. The results suggested that Cel7B is a strict endoglucanase, whereas Cel5A showed processivity because of its relative higher ability to hydrolyze the crystal cellulose.

Isolation, Identification, and Expression of Microbial Cellulases from the Gut of Odontotermes formosanus

  • Duan, Jiwei;Liu, Jun;Ma, Xueling;Zhang, Yue;Wang, Xiaohua;Zhao, Kai
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.122-129
    • /
    • 2017
  • Termites are destructive to agriculture, forestry, and buildings, but they can also promote agro-ecosystem balance through the degradation of lignocellulose. Termite-triggered cellulose digestion may be clarified through microbial metabolism of cellulose products. In the present study, we characterized the activities of cellulase and its three components synthesized by the cellulase-producing fungal strain HDZK-BYTF620 isolated from the gut of Odontotermes formosanus. The protein components of cellulases were synthesized by strain HDZK-BYTF620, which were isolated and characterized using polyacrylamide gel electrophoresis, and the expression of the cellulases was studied at the proteome level.

Study on the Storage Stability of Xeno-Bone Graft Material by Irradiation (방사선 조사된 골수복제의 저장 안전성 평가)

  • Lee, Hak-Jyung;Kim, Jae-Hun;Kim, Tae-woon;Lee, Ju-Woon;Choi, Jong-il
    • Journal of Radiation Industry
    • /
    • v.4 no.4
    • /
    • pp.381-384
    • /
    • 2010
  • In this study, the microbial safety and mechanical properties of xeno-bone graft material irradiated were investigated during the storage. Xeno-bone graft of the deminerlized bone matrix in carboxy-methyl-cellulose was gamma-irradiated and was cultured in PCA and PDA agar to check microbial contamination. Total aerobic bacteria and fungi were not detected in the irradiated and non-irradiated sample stored in accelerator at $30^{\circ}C$ for 10 months. Viscosity of CMC treated gamma irradiation was also not changed by holding period.

Enzymatic sccharification of lignocellulosic biomass by enzyme system of brown-rot fungi (갈색부후균의 효소시스템을 이용한 목질계 바이오매스의 효소당화)

  • Yoon, Jeong-Jun;Cha, Chang-Jun;Kim, Yeong-Suk;Kim, Young-Kyoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.529-532
    • /
    • 2006
  • Recently the production of ethanol from lignocecllulosics has received much attention due to immense potential for conversion of renewable biometerials into biofuels and chemicals. Fomitopsis palustris causes a typycal brown-rot and is unusual in that it rapidly depolymerize the cellulose in wood without removing the surrounding lignin that normally prevents microbial attack. This study demonstrated that the brown rot basidiomycete F. palustris was able to degrade crystalline cellulose. This fungus could also produce the three major cellulases (BGL, EXG and EG) when the cells were grown on 2.0% Avicel. The fungus was able to degrade both the crystalline and amorphous forms of cellulose from woody biomasses. Moreover, we found that this fungus has the processive EG like CBH which are able to degrade the crystalline region of cellulose. To establish the cellulase system in relation with degradation of woody biomass, we performed that purification, characterization and molecular cloning of a BGL, EGs and GLA from F. palustris grown on Avicel.

  • PDF

Isolation and Identification of Acebacter xylinum GS11 Producing Cellulose (Cellulose를 생산하는 Acetobacter xylinum GS11의 분리.동정)

  • 고정연;신공식;윤병대;최우영
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.3
    • /
    • pp.139-146
    • /
    • 2000
  • 산업적으로 유용한 미생물 유래 셀룰로오스를 생산 이용하기 위해 전국 각지 양조식초의 덧으로부터 세룰로오스의 생산성이 높고 조질의 균일성을 나타내는 균주를 분리하였다 분리균 GS11은 gram 음성이고 간균(0.6$\times$2.2~3.2 $\mu\textrm{m}$)의형태를 하고 있으며 편모를 가지고 있어 운동성을 보였다. 또한 세포내 지방산 조성은 다량의 불포화 지방산 {{{{ {C}_{18:1} }}}}과 포화지반산 {{{{ {C}_{16:0 } }}}}, {{{{ {C}_{14:0 } }}}} 이 대부분을 차지하였고 DNA 염기조성 (G+C) 함량은 58.4% 이였으며 ubiqunone 은 {{{{ { Q}_{10 } }}}}을 갖는 것으로 나타났다 이러한 형태학적 생리.생화학적 특성의 결과에 따라 본 균주는 Acetobacter xylinum GS11으로 동정되었다 A. xylinum, GS11 의배양기간 동안 셀룰로오스 생산성을 검토하고자 250mL 삼각플라스크에 균주를 접종하여 $30^{\circ}C$에서 12일간 정치배양하였다 그결과 기질인 glucose의 소비는 접종 후 급소하게 감소하여 셀룰로오스 생산에 이용되었으며 셀룰오스의 생산은 배양 9일 경에 2.8g/l로 최대의 생산량을 나타냈다.

  • PDF

Effects of Cordyceps militaris Mycelia on In vitro Rumen Microbial Fermentation

  • Yeo, Joon Mo;Lee, Shin Ja;Lee, Sang Min;Shin, Sung Hwan;Lee, Sung Hoon;Ha, Jong K.;Kim, WanYoung;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.201-205
    • /
    • 2009
  • Effects of Cordyceps militaris mycelia on rumen microbial fermentation were determined by measuring in vitro gas production, cellulose digestion and VFA concentrations. C. militaris mycelia was added to buffered rumen fluid with final concentrations of 0.00, 0.10, 0.15, 0.20, 0.25 and 0.30 g/L and incubation times were for 3, 6, 9, 12, 24, 36, 48 and 72 h. At all incubation times, the gas production showed a quadratic increase with the supplementation of C. militaris mycelia; maximum responses were seen with 0.25 g/L supplementation. However, the gas production was significantly lower for the 0.30 g/L supplementation than for the 0.25 g/L supplementation from 9 h to 72 h incubation. The cellulose filter paper (FP) digestion showed a quadratic increase, as did the gas production except at 3 h incubation. The concentration of total VFA was significantly increased by the supplementation of C. militaris mycelia compared with the control treatment; the highest response was also seen with 0.25 g/L supplementation. This was true for responses in the concentration of acetic and propionic acids. As opposed to other responses, the responses of pH to the supplementation of C. militaris mycelia showed a quadratic decrease from 3 h to 36 h incubation. In conclusion, C. militaris mycelia alter the mixed rumen microbial fermentation with increases in the production of gas and VFA, and cellulose FP digestion.

Characterization of Microbial Fermented Cellulose Porous Foam Prepared by Radiation Treatment (방사선 이용 미생물 발효 셀룰로오스 다공성 폼 제조 및 특성)

  • Gwon, Hui-Jeong;Shin, Young Min;Choi, Jong-Bae;Lim, Jong-Young;Jeong, Jin-Oh;Jeong, Sung In;Park, Jong-Seok;Kim, Jin Kyu;Lim, Youn-Mook;Choi, Young-Hun;Kim, Sang-Suk
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.302-307
    • /
    • 2013
  • Microbial fermented cellulose gel, citrus gel (CG), was successfully fabricated to porous foam by radiation treatment and freeze drying. The chemically induced radiation was used to create highly porous foam and further freeze drying of the CG produced tough foams with interconnected open pores for use in tissue engineering. The microstructure of the CG foam was controlled by varying the irradiation dose and quenching temperature with pore size ranging from several microns to a few hundred microns. Tensile strength and Gurley value of the CG foam were influenced by irradiation dose. These radiation induced CG foams are promising scaffolds for tissue engineering.