• Title/Summary/Keyword: Microbial activity

Search Result 1,809, Processing Time 0.034 seconds

Enzymatic Activities in Petroleum Wastewater Purification System by an Activated Sludge Process

  • Li Yin;Chrost Ryszard J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.200-204
    • /
    • 2006
  • The enzymology of an activated sludge system for a petroleum wastewater purification process was investigated. Leucine-aminopeptidase (L-AMP), ${\beta}$-glucosidase (${\beta}-GLC$), and lipase (LIP) were selected for the study. It was found that more than 81.7% of enzymatic activity was associated with microbial cells in the activated sludge floc. The metabolic response of a mixed microbial population to increased phenol concentration showed that L-AMP activity increased in the activated sludge, whereas activities of ${\beta}-GLC$ and LIP decreased, due to the inhibitory effect of the phenol which varied from 100 mg/l to 500 mg/l.

Search for Plant-originated Antibacterial Compounds Against Pathogen (Acidovorax avenae subsp. citrulli) of Watermelon Bacterial Fruit Blotch (수박 과실썩음병 병원균(Acidovorax avenae subsp. citrulli)에 대한 식물유래 항균 활성물질 탐색)

  • Noh, Jin-Taek;Choi, Yong-Hwa
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.1
    • /
    • pp.77-89
    • /
    • 2015
  • 133 Species of medicinal plants were used for the development of natural agrichemicals with anti-microbial activity against Acidovorax avenae subsp. citrulli, a pathogen of bacterial fruit blotch in watermelon. The MeOH-extracts of these medicinal plants were examined for anti-microbial activity by bioassay. The MeOH-extract of Citrus unshiu Markovich had the strongest antibacterial activity against Acidovorax avenae subsp. citrulli. To identify anti-microbial compounds from Citrus unshiu Markovich, solvent-fractionation was used. The fraction of hexane, which showing the highest value of anti-microbial activity, was analyzed by GC-MS. Each mass spectra, corresponding to each peak of chromatogram, was compared to mass database of Wiley library. As a result, d-Limonene, ${\gamma}$-terpinene, ${\beta}$-linalool, terpineol, palmitic acid, 9,12-octadecadienoic acid, Linolenic acid, and stigmasterol were identified. Among them, d-Limonene, ${\gamma}$-terpinene, ${\beta}$-linalool, and terpineol confirmed to be shown the anti-microbial activity by bioassay. Especially, d-Limonene and ${\gamma}$-terpinene found to have strong activity. In conclusion, we thought d-limonene and ${\gamma}$-terpinene from Citrus unshiu Markovich. Latin, had anti-microbial activity against Acidovorax avenae subsp. citrulli and could be candidates for the control agents for the control of bacterial fruit blotch in watermelon.

Soil Dehydrogenase Activity and Microbial Biomass C in Croplands of JeJu Province (제주지역 농경지 이용유형별 토양 탈수소효소활성과 미생물체량)

  • Joa, Jae-Ho;Moon, Kyung-Hwan;Choi, Kyung-San;Kim, Seong-Cheol;Koh, Sang-Wook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.2
    • /
    • pp.122-128
    • /
    • 2013
  • This study was carried out to evaluate the soil dehydrogenase activity and microbial biomass C with soil type and land use in cropland of JeJu region. Soil chemical properties, dehydrogenase activity, and microbial biomass C were analyzed after sampling from upland (50 sites), orchard (50 sites), paddy (30 sites), horticultural facility (30 sites) in March. Average pH values was at 6.3 in upland soil, however soil chemical properties showed a large spatial variations in both orchard and horticultural facility soil. The Zn and Cu contents increased by the continuous application of pig manure compost in some citrus orchard soil. Soil dehydrogenase activity and microbial biomass C were higher in non-volcanic ash than in volcanic ash soil regardless of land use type. Soil dehydrogenase activity was two to four times higher in upland than in the others. It was at 38.7 ug TPF $24^{h-1}g^{-1}$ in non-volcanic ash of upland soil. Microbial biomass C content was very high in horticultural facility soil and it showed at 216.8 $mg\;kg^{-1}$ in non-volcanic ash. Soil dehydrogenase activity showed a positive correlation with organic matter ($r^2$=0.59), Zn ($r^2$=0.65), and Cu ($r^2$=0.66) in non-volcanic ash horticultural facility soil. There was a negative correlation ($r^2$=0.57) between soil organic matter and dehydrogenase activity in volcanic ash upland soil.

Functional Characteristics and Diversity of a Novel Lignocelluloses Degrading Composite Microbial System with High Xylanase Activity

  • Guo, Peng;Zhu, Wanbin;Wang, Hui;Lu, Yucai;Wang, Xiaofen;Zheng, Dan;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.254-264
    • /
    • 2010
  • To obtain an efficient natural lignocellulolytic complex enzyme, we screened an efficient lignocellulose-degrading composite microbial system (XDC-2) from composted agricultural and animal wastes amended soil following a long-term directed acclimation. Not only could the XDC-2 degrade natural lignocelluloses, but it could also secrete extracellular xylanase efficiently in liquid culture under static conditions at room temperature. The XDC-2 degraded rice straw by 60.3% after fermentation for 15 days. Hemicelluloses were decomposed effectively, whereas the extracellular xylanase activity was dominant with an activity of 8.357 U/ml on day 6 of the fermentation period. The extracellular crude enzyme noticeably hydrolyzed natural lignocelluloses. The optimum temperature and pH for the xylanase activity were $40^{\circ}C$ and 6.0. However, the xylanase was activated in a wide pH range of 3.0-10.0, and retained more than 80% of its activity at $25-35^{\circ}C$ and pH 5.0-8.0 after three days of incubation in liquid culture under static conditions. PCR-DGGE analysis of successive subcultures indicated that the XDC-2 was structurally stable over long-term restricted and directed cultivation. Analysis of the 168 rRNA gene clone library showed that the XDC-2 was mainly composed of mesophilic bacteria related to the genera Clostridium, Bacteroides, Alcaligenes, Pseudomonas, etc. Our results offer a new approach to exploring efficient lignocellulolytic enzymes by constructing a high-performance composite microbial system with synergistic complex enzymes.

Quality Properties of Gangha-ju Liquor According to the Preparation Method (제조방법에 따른 강하주의 품질 특성)

  • Yu, Young-Ju;Jung, Soon-Teck
    • Journal of the Korean Society of Food Culture
    • /
    • v.18 no.2
    • /
    • pp.111-122
    • /
    • 2003
  • This studies were performed to develop a Korean traditional folk liquor namely Gangha-ju has been prepared at Bosung district in Korea, and manufacturing conditions and anti-oxidation activity and anti-microbial activity of Gangha-ju were investigated. Ethyl-alcohol 20% and 30% Gangha-ju were brewed with glutinous rice wine, distilled liquor and 6 herbs of ginger, cinnamon, etc. Chemical and physical properties of 30% Gangha-ju were acidity 0.22, pH 4.31, amino acidity 3.26, transmittance 59 and conductivity $911\;{\mu}s/m$, and 20% Gangha-ju were 0.43, 4.20, 6.26, 62 and $924\;{\mu}s/m$. Volatile flavor compounds of ethyl alcohol, acetic acid, butanol, n-amyl alcohol, iso-pentyl alcohol, ethyl acetate, butyl acetate, acetaldehyde and furfural were detected, and main aroma compounds of Gangha-ju were isopentyl alcohol and ethyl acetate. Anti-oxidation activity by DPPH method was evaluated 31.32%, and nitrite scavenging effect was 31.79%. Anti-microbial activity against several microorganisms was pronounced strong activity over a wide range of test organisms, and Leuconostoc mesenteroids and Salmonella Ttyphimurium, Staphylococcus epidermidis were found to be more sensitive to Gangha-ju than Escherichia coli and Aspergillus flavus.

Comparison of Microbial Diversity of Korean Commercial Makgeolli Showing High ${\beta}$-Glucan Content and High Antihypertensive Activity, Respectively

  • Min, Jin-Hong;Kim, Young-Hun;Kim, Jae-Ho;Choi, Shin-Yang;Lee, Jong-Soo;Kim, Ha-Kun
    • Mycobiology
    • /
    • v.40 no.2
    • /
    • pp.138-141
    • /
    • 2012
  • We measured physiological functionalities, including antihypertensive angiotensin I-converting enzyme inhibitory activity and immun-stimulating ${\beta}$-glucan content for sixty kinds of Makgeolli that is commercially available from the market. As a result, we selected R-12 commercial raw Makgeolli, with a high content of immuno-stimulating ${\beta}$-glucan, and R-14 commercial raw Makgeolli, exhibiting high antihypertensive activity. Due to the similarities in their overall physicochemical properties and raw materials used for fermentation, we compared the microbial flora in order to investigate the reason for the differences in their functionalities. Nested PCR and denaturing gradient gel electrophoresis for yeasts and bacteria were performed for analysis of microbial diversity of two different kinds of Makgeolli (i.e., R-12, R-14), which showed immuno-stimulating ${\beta}$-glucan content and exhibited a very high level of antihypertensive activity, respectively. Analysis of the 18S rDNA amplicon revealed a major presence of the yeast strain Pichia burtonii in every Makgeolli sample. Analysis of the 16S rDNA amplicon revealed a predominance of lactic acid bacteria, and the most frequent lactic acid bacteria were Lactobacillus ingluviei, L. fermentum, and L. harbinensis, and Lactobacillus sp. Among these, L. harbinensis was detected only in R-12 and L. ingluviei was found only in R-14. Different functionalities from the individual commercially available Makgeolli may be attributed to actions of different microbial flora during fermentation.

Effect of Platycodon grandiflorum Fermentation with Salt on Fermentation Characteristics, Microbial Change and Anti-obesity Activity (소금 첨가에 따른 도라지 발효 특성과 미생물 변화 및 항비만 효능 평가)

  • Shin, Na Rae;Lim, Sokyoung;Kim, Hojun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.18 no.2
    • /
    • pp.64-73
    • /
    • 2018
  • Objectives: This study investigated the effect on microbial ecology, fermentation characteristics and anti-obesity of Platycodon grandiflorum (PG) fermentation with salt. Methods: PG was fermented for four weeks with 2.5% salt and the characteristics of fermented PG were performed by measuring pH, total sugar content, viable bacteria number and microbial profiling. Also, we measured total polyphenol, flavonoid and the percent of inhibition of lipase activity and lipid accumulation. Results: Salt added to PG for fermentation had an effect on pH, total sugar, total and the number of lactic acid bacteria. Total sugar and pH were reduced and number of total and lactic acid bacteria were increased after fermentation. The majority of bacteria for fermentation were Lactobacillus plantarum, Leuconostoc psedomesenteroides and Lactococcus lactis subspecies lactis regardless of salt addition. However, microbial compositions were altered by added salt and additional bacteria including Weissella koreensis, W. viridescens, Lactobacillus sakei and Lactobacillus cuvatus were found in fermented PG with salt. Total flavonoid was increased in fermented PG and lipid accumulation on HepG2 cells treated with fermented PG was reduced regardless of salt addition. Moreover, fermented PG without salt suppressed lipase activity. Conclusions: Addition of salt for PG fermentation had influence on fermentation characteristics including pH and sugar content as well as number of bacteria and microbial composition. In addition, fermented PG showed anti-obesity effect by increasing flavonoid content and inhibition of lipase activity and lipid accumulation.

Effect of Exposure Concentration and Time of Fuel Additives on the Indigenous Microbial Community in Forests (산림 토착 미생물 군집에 미치는 유류 첨가제 노출 농도 및 시간의 영향)

  • Cho, Won-Sil;Cho, Kyung-Suk
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.5
    • /
    • pp.387-394
    • /
    • 2008
  • The toxicity of methyl tert-butyl ether (MTBE), tert-butyl alcohol (TBA) and formaldehyde (FA) on the indigenous microbial community in forest soil was studied. MTBE, TBA and FA with different concentrations were added into microcosms containing forest soil samples. After 10 and 30 days, total viable cell number and dehydrogenase activity in the microcosms were evaluated. Bacterial communities in the microcosms were also analyzed using a denaturing gradient gel electrophoresis (DGGE). Dehydrogenase activity and total viable cell number were decreased according to the increase of MTBE, TBA and FA concentrations (P<0.05). FA toxicity was the highest, but TBA toxicity was the lowest. The results of principal component analysis using DGGE fingerprints showed that the microbial communities contaminated MTBE, TBA and FA were grouped by exposure time not exposure concentration. Dominant species in the microcosms were as follows: Photobacterium damselae sub sp. and Bacillus sp. KAR28 for MTBE; Mycobacterium sp. and Uncultured Clostridium sp. for TBA; and Uncultured Paenibacillaceae bacterium and Anxynobacillus, Flavithermus for FA.

Biochemical Characterization of a Novel Alkaline and Detergent Stable Protease from Aeromonas veronii OB3

  • Manni, Laila;Misbah, Asmae;Zouine, Nouhaila;Ananou, Samir
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.358-365
    • /
    • 2020
  • An organic solvent- and bleach-stable protease-producing strain was isolated from a polluted river water sample and identified as Aeromonas veronii OB3 on the basis of biochemical properties (API 20E) and 16S rRNA sequence analysis. The strain was found to hyper-produce alkaline protease when cultivated on fish waste powder-based medium (HVSP, 4080 U/ml). The biochemical properties and compatibility of OB3 with several detergents and additives were studied. Maximum activity was observed at pH 9.0 and 60℃. The crude protease displayed outstanding stability to the investigated surfactants and oxidants, such as Tween 80, Triton X-100, and H2O2, and almost 36% residual activity when incubated with 1% SDS. Remarkably, the enzyme demonstrated considerable compatibility with commercial detergents, retaining more than 100% of its activity with Ariel and Tide (1 h, 40℃). Moreover, washing performance of Tide significantly improved by the supplementation of small amounts of OB3 crude protease. These properties suggest the potential use of this alkaline protease as a bio-additive in the detergent industry and other biotechnological processes such as peptide synthesis.

Enzyme Activities in the Soil of Quercus mongolica Forests (신갈나무 산림토양에서의 효소활성도)

  • Song In-Geun;Yong-Keel Choi;Byung-Re Min
    • The Korean Journal of Ecology
    • /
    • v.18 no.4
    • /
    • pp.503-512
    • /
    • 1995
  • The present paper describes partial results of the study on the activities of microbes in the soil of Quercus mongolica forest from July, 1994 to April, 1995. To determine the relationship between structure and function of soil microbial ecosystem, the author investigated the seasonal change of physical environmental factors, microbial population and soil enzyme activities. The changes of pH was not significant and the temperature of surface soil was 2℃ higher than lower soil through out the year. Moisture contents (%) of soil samples ranged from 7.64% to 42.11%. However, soils of site 3 at Mt. Komdan in which vegetation is successional have higher moisture content than the others. The bacterial population increased in summer, but continuously decreased in autumn and winter, and then reincreased again in spring. Bacterial population of surface soil was higher than those of 30 cm depth all the year round. Dehydrogenase activity (DHA) was about two-fold higher throughout in surface soil compared to those of lower soil. And the correlation coefficient between DHA and bacterial population size was 0,713, It was suggested that DHA could be used as a primary index of soil microbial population and activity in soil ecosystem.

  • PDF