• Title/Summary/Keyword: Microbial Population

Search Result 581, Processing Time 0.049 seconds

Relation between Chemical Properties and Microbial Activities in Soils from Reclaimed Tidal Lands at South-western Coast Area in Korea

  • Park, Mi-Na;Go, Gang-Seuk;Kim, Chang-Hwan;Bae, Hui-Su;Sa, Tongmin;Choi, Joon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.4
    • /
    • pp.262-270
    • /
    • 2015
  • The scientific information between microbial community and chemical properties of reclaimed tidal soil is not enough to understand the land reclamation process. This study was conducted to investigate the relation between chemical properties and microbial activities of soils from reclaimed tidal lands located at south-western coastal area (42 samples from Goheuong, Samsan, Bojun, Kunnae, Hwaong and Yeongsangang sites). Most of the reclaimed soils showed chemical characteristics as salinity soil based on EC. Only $Na^+$ in exchangeable cation was dependent on EC of reclaimed soil, whereas other cations such as $K^+$, $Ca^{2+}$, and $Mg^{2+}$ were independent on EC. The mesophilic bacteria decreased with an increase in EC of soil. Microbial population increased with soil organic content in the range of $0{\sim}10g\;kg^{-1}$ and dehydrogenase activity less than $100{\mu}g-TPF\;g^{-1}h^{-1}$. Microbial population of soils from reclaimed tidal lands was closely related to the microbial community containing hydrolytic enzyme activities of cellulase, amylase, protease, and lipase.

Evaluation of Soil Microflora in Salt Accumulated Soils of Plastic Film House (염유집적(鹽類集積) 시설재배지(施設栽培地)의 토양미생물상(土壤微生物相) 평가(評價))

  • Kwon, Jang-Sik;Suh, Jang-Sun;Weon, Hang-Yeon;Shin, Jae-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.204-210
    • /
    • 1998
  • The experiment was conducted to obtain the basic data required to characterize and improve rhizosphere environment of salt-accumulated greenhouse(SAG) soils by comparing the soil properties and the microbial flora of such soils to those of unprotected arable upland(UAU) soils. Soils were sampled from greenhouses and unprotected upland fields around the country. Microbial propulation, biomass C content and soil chemical properties were of interest. Population density of fluorescent Pseudomonas was high in UAU soils, while those of pathogenic Fusarium sp. and fluorescent Pseudomonas were low in SAG soils. With increasing soil organic matter(OM) content, the population densities of Bacillus sp., fluorescent Pseudomonas sp., Enterobacteriaceae, and microbial biomass C content increased. As soil electrical conductivity(EC) increased higher than $5.1dS\;m^{-1}$, the ratios of bacteria to fungi(B/F) and actinomycetes to fungi(A/F) and the population density of fluorescent Pseudomonas decreased remarkably. The soil pH was positively related to the population density of aerobic bacteria, while it was negatively related to that of fungi. The soil OM content was significantly correlated to the population densities of actinomycetes($r=0.226^*$). Bacillus sp.($r=0.334^{**}$), Enterobacteriaceae($r=0.276^*$), and the microbial biomass C content($R=0.439^{**}$). The population density of actinomycetes was also significantly correlated with soil exchangeable Ca($r=0.334^{**}$) and Mg($r=0.352^{**}$).

  • PDF

Modeling Growth Kinetics of Lactic Acid Bacteria for Food Fermentation

  • Chung, Dong-Hwa;Kim, Myoung-Dong;Kim, Dae-Ok;Koh, Young-Ho;Seo, Jin-Ho
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.664-671
    • /
    • 2006
  • Modeling the growth kinetics of lactic acid bacteria (LAB), one of the most valuable microbial groups in the food industry, has been actively pursued in order to understand, control, and optimize the relevant fermentation processes. Most modeling approaches have focused on the development of single population models. Primary single population models provide fundamental kinetic information on the proliferation of a primary LAB species, the effects of biological factors on cell inhibition, and the metabolic reactions associated with cell growth. Secondary single population models can evaluate the dependence of primary model parameters, such as the maximum specific growth rate of LAB, on the initial external environmental conditions. This review elucidates some of the most important single population models that are conveniently applicable to the LAB fermentation analyses. Also, a well-defined mixed population model is presented as a valuable tool for assessing potential microbial interactions during fermentation with multiple LAB species.

Effect of Coal Fly Ash on Changes of Microbial Flora during the Household Garbage Composting (수분조절제로 석탄회를 첨가한 음식쓰레기 퇴비화과정 중 미생물상의 변동)

  • Seong, Soon-Hee;Kim, Woo-Sung;Seo, Jeoung-Yoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.4
    • /
    • pp.291-294
    • /
    • 1997
  • The purpose of this study was to investigate the change of microbial flora of using coal fly ash as humidity conditioner during the household garbage composting.The summarized results of microbial flora were as follows:There was no difference of t he seasonal fluctuation of mesophilic and themophilic microorganisms.The population of thermophilic actinomycetes was rapidly increased in winter,but not much changed in spring and summer.Thermophilic and mesophilic fungal flora were increased at the same time,but the population of thermophilic fungal flora was smaller than that of mesophilic. The population of bacteria, actinomycestes and fungi showed not much difference.

  • PDF

Studies on the Microbial Population and the Amylase Activity of the Forest Soil (삼림토양의 미생물군집과 아밀라아제 활성에 관한 연구)

  • Lee, Hee-Sun;Shim, Jae-Kuk
    • The Korean Journal of Ecology
    • /
    • v.17 no.2
    • /
    • pp.171-183
    • /
    • 1994
  • Soil condition, total number of bacteria, soil amylase activity and microbial biomass $(CO_2-C)$ were measured at soil of different forest types. And the difference of the allelopathic effect was determined between fresh leaf extract of Quercus acutissima and Pinus rigida to the bacteria isolated from soil of different forest types. 1. Total number of bacteria in Carpinus laxiflora forest soil was 4~7 times larger than that in pinus desiflora forest soil. 2. Soil amylase activity was positively correlated with total number of soil bacteria and soil organic matter content. The amylase activity at F layer was 4~5 times larger than that at H layer, and that at H layer was 2~4 times larger than that at A layer. 3. Seasonal changes of microbial biomass showed a peak in summer, and vertical distribution of microbial biomass decreased with increasing soil depth. The microbial biomass in Pinus densiflora forest soil was larger than that in Quercus serrata forest soil. 4. Fresh leaf extract of Pinus rigida and Quercus acutissima showed an acceleration or inhibition effect on the growth of soil bacteria, and that of !. acutissima inhibited larger number of soil bacterial strains than that of P. rigida. 4.2% and 25% of soil bacterial strains isolated from soil of P. rigida and Q. acutissima forests were inhibited by fresh leaf extract of P. rigida and Q. acutissima, respectively.

  • PDF

Treatment of Organic Waste with Microorganisms of Mixed Population

  • Kim, Gi-Eun
    • KSBB Journal
    • /
    • v.22 no.3
    • /
    • pp.129-133
    • /
    • 2007
  • This study represents that a removal efficiency of organic matters in wastewater is activated by a sludge process using new mixed microbial population. In case of mixed microorganisms, removal rates of suspended solid (SS), biochemical oxygen demand (BOD) and chemical oxygen demand (COD) were over 90 percent under experimental condition, and removal efficiency of organic matters, sludge density index (SDI) and capillary suction time (CST) in mixed population were higher than that in not-mixed microorganism, while total kjeldahl nitrogen (TKN) and total phosphorus (T-P) which indicate a degree of eutrophication were removed easily in both case. From these results, we may propose that an application of the mixed microbial population is useful to treat domestic wastewater including a great deal of organic matters.

Phenanthrene 오염토양의 정화를 위한 동전기-생물학적복원기술의 적용과 전류밀도의 영향

  • 김상준;박지연;이유진;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.181-185
    • /
    • 2004
  • Electrokinetic bioremediation was conducted on phenanthrene-contaminated soil to study the effects of soil temperature and pH on microbial population and removal efficiency at different current densities from 0.63 to 3.13 mA cm$^{-2}$ . Microorganism used in the biodegradation of phenanthrene was Sphingomonas sp. 3Y, which was isolated from a diesel-contaminated site. The microorganism was successfully penetrated into the contaminated soil by electrokinetic phenomena and the highest microbial population was observed in the middle region of soil specimen where soil pH was near neutral. Therefore, phenanthrene removal occurred mainly at anode and middle parts of soil specimen due to a relatively high microbial population. Also, the highest removal efficiency of 68.8% was obtained at 1.88 mA cm$^{-2}$ while low degradation was detected at 3.13 mA cm$^{-2}$ . It was presumably because the soil temperature at 1.88 mAcm$^{-2}$ was close to the appropriate temperature of about 30'c while the temperature increase to above 45$^{\circ}C$ at 3.13 mA cm$^{-2}$ inhibited the microbial activity severely.

  • PDF

Effects of Harvest Seasons on Quality and Microbial Population of Fresh-cut Iceberg Lettuce (수확시기가 신선편이 결구상추의 품질 및 미생물수에 미치는 영향)

  • In, Byung-Chun;Kim, Ji-Gang;Nimikeatkai, Hataitip;Lee, Jung-Soo
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.343-350
    • /
    • 2010
  • This study was conducted to investigate the effect of harvest seasons on quality and microbial population at different steps of production chain of fresh-cut iceberg lettuce. Iceberg lettuces harvested in May, June, July, October, and December were processed following industrial practices, and stored at $5^{\circ}C$ for 9 days. For microbial measurement, samples were taken from each of the following steps: harvest, transport, pretreatment, cutting, 1st-washing, 2nd-washing, and day 3, 6, and 9 of storage. Iceberg lettuce cultivated in protect house and harvested in May and October showed higher $CO_2$ levels in the packages and electrolyte leakages than lettuce harvested in June, July and December. Microbial population of raw materials harvested in July was highest (6.76 log), and microbial growth rate during storage was highest in samples harvested in May. Lettuce harvested in June had better quality and microbial safety compared to other lettuces. Although lettuce harvested in October and December had less microbial population in either raw materials or processed products, those samples had inferior quality due to off-odor development and severe browning. Therefore, it is required to maintain quality and ensure microbial safety to distribute fresh-cut lettuce with high quality and safety throughout the year.

Microbial population dynamics in constructed wetlands: Review of recent advancements for wastewater treatment

  • Rajan, Rajitha J.;Sudarsan, J.S.;Nithiyanantham, S.
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.181-190
    • /
    • 2019
  • Constructed wetlands are improvised man-made systems, designed for adopting the principle of natural wetlands for purifying wastewater - the elixir of life. They are used widely as a cost-effective and energy-efficient solution for treating greywater generated from different tertiary treatment sources. It provides an elaborate platform for research activities in an attempt to recycle earth's natural resources. Among the several organic impurities removal mechanisms existing in constructed wetland systems, the earth's active microbial population plays a vital role. This review deals with the recent advancements in constructed wetland systems from a microbiological perspective to (effect/ devise/ formulate) chemical and physical treatment for water impurities. It focuses on microbial diversity studies in constructed wetlands, influence of wetland media on microbial diversity and wetland performance, role of specific microbes in water reuse, removal of trace elements, some heavy metals and antibiotics in constructed wetlands. The impurities removal processes in constructed wetlands is achieved by combined interactive systems such as selected plant species, nature of substrate used for microbial diversity and several biogeochemical effected reaction cycles in wetland systems. Therefore, the correlation studies that have been conducted by earlier researchers in microbial diversity in wetlands are addressed herewith.