• Title/Summary/Keyword: Microbial Fuel Cell

Search Result 131, Processing Time 0.029 seconds

A Study on the Driving Characteristics of Microbial Fuel Cell Using Mixed Strains in Domestic Wastewater (생활폐수 내 혼합균주를 이용한 미생물 연료전지의 구동 특성에 관한 연구)

  • KIM, SANG KYU;YOO, DONG JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.506-513
    • /
    • 2021
  • The use of fossil fuels is a major contributor to the increase atmospheric greenhouse gas emissions. As such problems arise, interest in new and renewable energy devices, particularly fuel cells, is greatly increasing. In this study, various characteristics of mixed strains were observed in wastewater collected by the Jeonju Environment Office to investigate the effects of microorganisms on voltage generation and voltage generation of substrates, electrode materials, electrons, electron transport media, and ash microbial fuel cells. As a result of separately measuring the voltage generated during inoculation, the inoculation voltage of Escherichia coli K12 (E. coli K12) was 0.45 V, and the maximum inoculation voltage of the mixed strain was 1.2 V. Thereafter, voltage values were collected using a digital multimeter and the amount of voltage generated over time was measured. In the case of E. coli K12, the maximum voltage reached 0.45 V, and the cell voltage was maintained above 0.23 V for 140 hours. In contrast, for the mixed strain, the maximum voltage reached 1.2 V and the voltage was slowly decreased to 0.97 V. In addition, the degree of microbial adsorption to the electrod surface after the inoculation test was confirmed using a scanning electron microscope. Therefore, these results showed the possibility of purifying pollutants at the same time as power generation through the production of hydrogen ions using microorganisms and wastewater.

Energy Harvesting from Bio-Organic Substance Using Microbial Fuel Cell and Power Conditioning System (미생물 연료 전지와 전력 조절 시스템을 이용한 생체 유기 물질로부터의 전력 생산)

  • Yeo, Jeongjin;Yang, Yoonseok
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.242-247
    • /
    • 2017
  • This study presents a bio-chemical energy harvesting system which can generate electric power from bioorganic substance contained in vermicompost. It produced electricity by inoculating microbial fuel cell(MFC) with earthworm-composted food waste. The generated electricity was converted into usable voltage level for mobile electronics through power conditioning circuits. The implemented prototype showed $200{\mu}W$ of maximum output electric power, which successfully supplied a beacon device which continuously transmitted data to nearby smartphone without a battery. The proposed system can help develop portable or bio-mimetic energy supply for sustainable use with further improvement.

Performance of Microbial Fuel Cell Integrated with Anaerobic Membrane Filter for Continuous Sewage Treatment with Stable Effluent Quality (안정적 유출수질의 연속 하수처리를 위한 혐기성 멤브레인 필터와 통합된 미생물연료전지의 성능 평가)

  • Lee, Yunhee;Oa, Seong-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.6
    • /
    • pp.808-812
    • /
    • 2013
  • A new type of microbial fuel cell (MFC) with anaerobic membrane filter was designed to produce bioelectricity and to treat domestic sewage at relatively high organic loading rate (OLR) of $6.25kgCOD/m^3/day$ and short hydraulic retention time (HRT) of 1.9 h. A following aeration system was applied to ensure effluent water quality in continuous operation. Glucose was supplemented to increase the influent concentration of domestic sewage. Influent substrate of 95% was removed via the MFC and following aeration system and the corresponding maximum power density was $25.6mW/m^3$. External resistor of $200{\Omega}$ and air-cathode system contributed better MFC performance comparing to $2000{\Omega}$ and dissolved oxygen as a catholyte.

Continuous removal of heavy metals by coupling a microbial fuel cell and a microbial electrolytic cell

  • Xie, Guo R.;Choi, Chan S.;Lim, Bong S.;Chu, Shao X.
    • Membrane and Water Treatment
    • /
    • v.11 no.4
    • /
    • pp.283-294
    • /
    • 2020
  • This work aims at studying the feasibility of continuous removal of mixed heavy metal ions from simulated zinc plating wastewaters by coupling a microbial fuel cell and a microbial electrolysis cell in batch and continuous modes. The discharging voltage of MFC increased initially from 0.4621 ± 0.0005 V to 0.4864 ± 0.0006 V as the initial concentration of Cr6+ increased from 10 ppm to 60 ppm. Almost complete removal of Cr6+ and low removal of Cu2+ occurred in MFC of the MFC-MEC-coupled system after 8 hours under the batch mode; removal efficiencies (REs) of Cr6+ and Cu2+ were 99.76% and 30.49%. After the same reaction time, REs of nickel and zinc ions were 55.15% and 76.21% in its MEC. Cu2+, Ni2+, and Zn2+ removal efficiencies of 54.98%, 30.63%, 55.04%, and 75.35% were achieved in the effluent within optimum HRT of 2 hours under the continuous mode. The incomplete removal of Cu2+, Ni2+ and Zn2+ ions in the effluent was due to the fact that the Cr6+ was almost completely consumed at the end of MFC reaction. After HRT of 12 hours, at the different sampling locations, Cr6+ and Cu2+ removal efficiencies in the cathodic chamber of MFC were 89.95% and 34.69%, respectively. 94.58%, 33.95%, 56.57%, and 75.76% were achieved for Cr6+, Cu2+, Ni2+ and Zn2+ in the cathodic chamber of MEC. It can be concluded that those metal ions can be removed completely by repeatedly passing high concentration of Cr6+ through the cathode chamber of MFC of the MFC-MEC-coupled system.

Effect of Ammonium and Nitrate on Current Generation Using Dual-Cathode Microbial Fuel Cells

  • Jang, Jae-Kyung;Choi, Jung-Eun;Ryou, Young-Sun;Lee, Sung-Hyoun;Lee, Eun-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.270-273
    • /
    • 2012
  • These studies were conducted to determine the effects of various concentrations of ammonium and nitrate on current generation using dual-cathode microbial fuel cells (MFCs). Current generation was not affected by ammonium up to $51.8{\pm}0.0$ mg/l, whereas $103.5{\pm}0.0$ mg/l ammonium chloride reduced the current slightly. On the other hand, when $60.0{\pm}0.0$ and $123.3{\pm}0.1$ mg/l nitrate were supplied, the current was decreased from $10.23{\pm}0.07$ mA to $3.20{\pm}0.24$ and $0.20{\pm}0.01$ mA, respectively. Nitrate did not seem to serve as a fuel for current generation in these studies. At this time, COD and nitrate removal were increased except at $123{\pm}0.1$ mg ${NO_3}^-/l$. These results show that proper management of ammonium and nitrate is very important for increasing the current in a microbial fuel cell.

Measurement of Activation and Ohmic Losses using a Current Interruption Technique in a Microbial Fuel Cell (미생물연료전지(MFC)에서 전류차단법(current interrupt technique)을 이용한 활성화전압손실(activation loss)과 저항전압손실(Ohmic loss)의 측정)

  • Park, Kyung-Won;Oh, Sang-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.4
    • /
    • pp.357-362
    • /
    • 2010
  • Electricity can be directly generated from organic matter even wastewaters using a microbial fuel cell. To achieve high power in MFCs, finding factors decreasing activation and Ohmic losses is very important. In this study we determined activation loss at the anode and cathode and Ohmic loss using the current interruption technique in a H-type MFC. Activation loss at the cathode was four times higher that that of anode activation loss even if pt-coated carbon (0.5 $mg/cm^2$;10%Pt) was used as the cathode. Ohmic loss determined using current interruption technique (1146 ${\Omega}$) was almost same as the internal resistance (1167 ${\Omega}$) measured using AC impedance. The sum of activation losses at the anode and cathode was the same as the value of activation loss of the cell.

Performances of Metallic (sole, composite) and Non-Metallic Anodes to Harness Power in Sediment Microbial Fuel Cells

  • Haque, Niamul;Cho, Daechul;Kwon, Sunghyun
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.363-367
    • /
    • 2014
  • One chambered sediment microbial fuel cell (SMFC) was equipped with Fe, brass (Cu/Zn), Fe/Zn, Cu, Cu/carbon cloth and graphite felt anode. Graphite felt was used as common cathode. The SMFC was membrane-less and mediator-less as well. Order of anodic performance on the basis of power density was Fe/Zn ($6.90Wm^{-2}$) > Fe ($6.03Wm^{-2}$) > Cu/carbon cloth ($2.13Wm^{-2}$) > Cu ($1.13Wm^{-2}$) > brass ($Cu/Zn=0.24Wm^{-2}$) > graphite felt ($0.10Wm^{-2}$). Fe/Zn composite anode have twisted 6.73% more power than Fe alone, Cu/carbon cloth boosted power production by 65%, and brass (Cu/Zn) produced 65% less power than Cu alone. Graphite felt have shown the lowest electricity generation because of its poor galvanic potential. The estuarine sediment served as supplier of oxidants or electron producing microbial flora, which evoked electrons via a complicated direct microbial electron transfer mechanism or making biofilm, respectively. Oxidation reduction was kept to be stationary over time except at the very initial period (mostly for sediment positioning) at anodes. Based on these findings, cost effective and efficient anodic material can be suggested for better SMFC configurations and stimulate towards practical value and application.

Effect of Electrode Configuration on the Substrate Degradation in Microbial Fuel Cells (미생물연료전지에서 전극구조가 기질분해에 미치는 영향 연구)

  • Shin, Yujin;Lee, Myoung-Eun;Park, Chi-Hoon;Ahn, Yongtae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.8
    • /
    • pp.489-493
    • /
    • 2017
  • Microbial fuel cells (MFC) are bio-electrochemical processes that can convert various organic materials present in wastewater into electrical energy. For scaling-up and practical application of MFC, it is necessary to investigate the effect of anode size, electrode distance, and total area of anode on substrate degradation. Spaced electrode assembly (SPA) type microbial fuel cell with multiple anodes treating domestic wastewater was used for simulation. According to computer simulation results, the shorter the distance between electrodes than the size of single electrode, the faster the substrate degradation rate. Particularly, when the total area of the anode is large, the substrate decomposition is the fastest. In this study, it was found that the size of the anode and the distance between the electrodes as well as the cathode electrode, which is known as the rate-limiting step in the design of the microbial fuel cell process, are also important factors influencing the substrate degradation rate.