• Title/Summary/Keyword: Microbial Community Analysis

Search Result 409, Processing Time 0.021 seconds

Molecular Analysis of the Microorganisms in a Thermophilic CSTR used for Continuous Biohydrogen Production (연속수소생성에 사용되는 고온 CSTR 내의 미생물의 분자적 분석)

  • Oh, You-Kwan;Park, Sung-Hoon;Ahn, Yeong-Hee
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.431-437
    • /
    • 2005
  • Molecular methods were employed to investigate microorganisms in a thermophilic continuous stirred tank reactor(CSTR) used for continuous $H_2$ production. The reactor was inoculated with heat-treated anaerobic sludge and fed with a glucose-based medium. Denaturing gradient gel electrophoresis showed dynamic changes of bacterial populations in the reactor during 43 days of operation. Gas composition was constant from approximately 14 days but population shift still occurred. Populations affiliated with Fervidobactrium gondwanens and Thermoanaerobacterium thermosaccharolyticum were dominant on 21 and 41 days, respectively. Keeping pH of the medium at 5.0 could suppress methanogenic activity that was detected during initial operation period. $CH_4$ and mcrA detected in the samples obtained from the reactor or inoculum suggested the heat treatment condition employed in this study is not enough to remove methanogens in the inoculum. PCR using primer sets specific to 4 main orders of methanogens suggested that major $H_2$-consuming methanogens in the CSTR belong to the order Methanobacteriales.

Molecular Analysis of Bacterial Communities Distributed in Sea Water of Whitening Areas of Jeju Coast (제주연안 갯녹음(백화) 지역의 해수에 분포하는 세균군의 분자생물학적 분석)

  • 강형일;강봉조;김미란;윤병준;이동헌;오덕철
    • Korean Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.127-132
    • /
    • 2002
  • In this study, the bacterial communities distributed in sea water of the whitening areas of Gangjeong and Seongsan, Jeju-do have been analysed using the PCR amplification of 16S rRNA to obtain fundamental data and information on relationship of the whitening phenomenon and microbial ecosystem. In Gangjeong, diverse bacteria such as Alcanivorax, Paracoccus, Damselae, Pseudomonas, Rhodowlum, Silicibacter, Suiftobacter, and Roseobacter have been found, and Alcanivorax was the most abundant clone. The most abundant clone from Seongsan was Pseudomonas, of which Pseudomonas tolaasii and Pseudomonas mandeli were most abundantly occurred in the frequency of approx44% and 24%, respectively. Approx4% of the bacterial clones closest to Verrucomicrobiales and other unidentified clones were also fecund in Seongsan, suggesting there is a great discrepancy between bacterial communities from the whitening areas of Seongsan and Gangjeong. The mean temperature, chlorine concentration, pH, and dissolved oxygen (DO) of the sea water of Gangieong and Seongsan in August of 2001 (sampling period) was $27^{\circ}C$~$27.5^{\circ}C$, 30.24~30.60%, pH 8.23~8.36,7 .20~7.28 mg/ι, suggesting other environmental factors except far the factors mentioned above might result in difference of bacterial communities distributed in both areas.

Correlation between Characteristics of SOD in Coastal Sewage and Predictive Factor (연안 저질 SOD의 특성과 유발 영향인자에 대한 상관관계)

  • Kim, Beom-Geun;Khirul, Md Akhte;Kwon, Sung-Hyun;Cho, Dae-Chul
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.5
    • /
    • pp.596-604
    • /
    • 2019
  • This study conducted a sediment culture experiment to investigate the effects of sediment oxygen demand (SOD) and environmental factors on sediment and water quality. We installed a leaching tank in the laboratory, cultured it for 20 days, and analyzed the relationship between P and Fe in the sediment. As a result, the dissolved oxygen of the water layer decreased with time, while the oxidation-reduction potential of the sediment progressed in the negative direction to form an anaerobic reducing environment. The SOD was measured to be 0.05 mg/g at the initial stage of cultivation and increased to 0.09 mg/g on the 20th day, indicating the tendency of increasing consumption of oxygen by the sediment. The change is likely to have caused by oxygen consumption from biological-SOD, which is the decomposition of organic matter accumulated on the sediment surface due to the increase of chl-a, and chemical-SOD consumed when the metal-reducing product produced by the reduction reaction is reoxidized. The correlation between SOD and causality for sediment-extracted sediments was positive for Ex-P and Org-P and negative for Fe-P. The analysis of the microbial community in the sediment on the 20th day showed that anaerobic iron-reducing bacteria (FeRB) were the dominant species. Therefore, when the phosphate bonded to the iron oxide is separated by the reduction reaction, the phosphate is eluted into the water to increase the primary productivity. The reduced substance is reoxidized and contributes to the oxygen consumption of the sediment. The results of this study would be useful as the reference information to improve oxygen resin.

A Study of the Diversity and Profile for Extracellular Enzyme Production of Aerobically Cultured Bacteria in the Gut of Muraenesox cinereus (갯장어(Muraenesox cinereus) 장으로부터 호기적 조건에서 분리된 미생물의 다양성 및 세포외 효소 생산능 분석에 관한 연구)

  • Lee, Yong-Jik;Oh, Do-Kyoung;Kim, Hye Won;Nam, Gae-Won;Sohn, Jae Hak;Lee, Han-Seung;Shin, Kee-Sun;Lee, Sang-Jae
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.248-255
    • /
    • 2019
  • This research confirmed the diversity and characterization of gut microorganisms isolated from the intestinal organs of Muraenesox cinereus, collected on the Samcheonpo Coast and Seocheon Coast in South Korea. To isolate strains, Marine agar medium was basically used and cultivated at $37^{\circ}C$ and pH7 for several days aerobically. After single colony isolation, totally 49 pure single-colonies were isolated and phylogenetic analysis was carried out based on the result of 16S rRNA gene DNA sequencing, indicating that isolated strains were divided into 3 phyla, 13 families, 15 genera, 34 species and 49 strains. Proteobacteria phylum, the main phyletic group, comprised 83.7% with 8 families, 8 genera and 26 species of Aeromonadaceae, Pseudoalteromonadaceae, Shewanellaceae, Enterobacteriaceae, Morganellaceae, Moraxellaceae, Pseudomonadaceae, and Vibrionaceae. To confirm whether isolated strain can produce industrially useful enzyme or not, amylase, lipase, and protease enzyme assays were performed individually, showing that 39 strains possessed at least one enzyme activity. Especially the Aeromonas sp. strains showed all enzyme activity tested. This result indicated that isolated strains have shown the possibility of the industrial application. Therefore, this study has contributed for securing domestic genetic resources and the expansion of scientific knowledge of the gut microbial community in Muraenesox cinereus of South Korea.

Identification and Characterization of Microbial Community in the Coelomic Fluid of Earthworm (Aporrectodea molleri)

  • Yakkou, Lamia;Houida, Sofia;Dominguez, Jorge;Raouane, Mohammed;Amghar, Souad;Harti, Abdellatif El
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.391-402
    • /
    • 2021
  • Earthworms play an important role in soil fertilization, interacting continually with microorganisms. This study aims to demonstrate the existence of beneficial microorganisms living in the earthworm's immune system, the coelomic fluid. To achieve this goal, a molecular identification technique was performed, using cytochrome c oxidase I (COI) barcoding to identify abundant endogenic earthworms inhabiting the temperate zone of Rabat, Morocco. Then, 16S rDNA and ITS sequencing techniques were adopted for bacteria and fungi, respectively. Biochemical analysis, showed the ability of bacteria to produce characteristic enzymes and utilize substrates. Qualitative screening of plant growth-promoting traits, including nitrogen fixation, phosphate and potassium solubilization, and indole acetic acid (IAA) production, was also performed. The result of mitochondrial COI barcoding allowed the identification of the earthworm species Aporrectodea molleri. Phenotypic and genotypic studies of the sixteen isolated bacteria and the two isolated fungi showed that they belong to the Pseudomonas, Aeromonas, Bacillus, Buttiauxella, Enterobacter, Pantoea, and Raoultella, and the Penicillium genera, respectively. Most of the isolated bacteria in the coelomic fluid showed the ability to produce β-glucosidase, β-glucosaminidase, Glutamyl-β-naphthylamidase, and aminopeptidase enzymes, utilizing substrates like aliphatic thiol, sorbitol, and fatty acid ester. Furthermore, three bacteria were able to fix nitrogen, solubilize phosphate and potassium, and produce IAA. This initial study demonstrated that despite the immune property of earthworms' coelomic fluid, it harbors beneficial microorganisms. Thus, the presence of resistant microorganisms in the earthworm's immune system highlights a possible selection process at the coelomic fluid level.

Effect of Fish Meal Liquid Fertilizer Application on Soil Characteristics and Growth of Cucumber(Cucumis sativus L.) for Organic Culture (유기농 오이재배를 위한 어분액비 공급이 토양특성 및 오이 수량에 미치는 영향)

  • An, Nan-Hee;Cho, Jung-Rai;Gu, Ja-Sun;Kim, Young-ki;Han, Eun-Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.13-21
    • /
    • 2017
  • This study was carried out to evaluate the application effects of fish meal liquid fertilizer on soil characteristics and growth of cucumber for organic cultivation. Cucumber in greenhouse was transplanted on March $31^{th}$ in 2016, and the experimental treatments involve six treatments: No fertilizer, 0, 25, 50, and 100 mg/L N application by fish meal liquid fertilizer and chemical fertilizer. In the results of soil chemical property, application of 100 mg/L of fish meal liquid fertilizer showed a significant differences in pH, K, and Mg contents. The soil microbial community varied in relation to the fish meal liquid fertilizer treatments. Microbial biomass was lower in the chemical fertilizer than in the liquid fertilizer treatment. Result of principal component analysis obtained from Ecoplate showed that fish meal liquid fertilizer treatments, no liquid fertilizer, chemical fertilizer, and no fertilizer were divided into distinct groups, with the no fertilizer treatment located furthest from the other treatments. There were no significant differences in plant height of cucumber between the fish meal liquid fertilizer treatments and chemical fertilizer treatments. Also, the cucumber yield did not vary significantly between the concentrations of liquid fertilizers, and there were also no significant differences in the yield among the fish meal liquid and chemical fertilizer treatments. In conclusion, it is suggested that the application of fish meal liquid fertilizer can be used as a additional fertilizer for cucumber production with organic culture in greenhouse.

Screening and Identification of a Cesium-tolerant Strain of Bacteria for Cesium Biosorption (환경유래의 세슘 저항성 균주 선별 및 세슘 흡착제거 연구)

  • Kim, Gi Yong;Jang, Sung-Chan;Song, Young Ho;Lee, Chang-Soo;Huh, Yun Suk;Roh, Changhyun
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.4
    • /
    • pp.304-313
    • /
    • 2016
  • One of the issues currently facing nuclear power plants is how to store spent nuclear waste materials which are contaminated with radionuclides such as $^{134}Cs$, $^{135}Cs$, and $^{137}Cs$. Bioremediation processes may offer a potent method of cleaning up radioactive cesium. However, there have only been limited reports on $Cs^+$ tolerant bacteria. In this study, we report the isolation and identification of $Cs^+$ tolerant bacteria in environmental soil and sediment. The resistant $Cs^+$ isolates were screened from enrichment cultures in R2A medium supplemented with 100 mM CsCl for 72 h, followed by microbial community analysis based on sequencing analysis from 16S rRNA gene clone libraries(NCBI's BlastN). The dominant Bacillus anthracis Roh-1 and B. cereus Roh-2 were successfully isolated from the cesium enrichment culture. Importantly, B. cereus Roh-2 is resistant to 30% more $Cs^+$ than is B. anthracis Roh-1 when treated with 50 mM CsCl. Growth experiments clearly demonstrated that the isolate had a higher tolerance to $Cs^+$. In addition, we investigated the adsorption of $0.2mg\;L^{-1}$ $Cs^+$ using B. anthracis Roh-1. The maximum $Cs^+$ biosorption capacity of B. anthracis Roh-1 was $2.01mg\;g^{-1}$ at pH 10. Thus, we show that $Cs^+$ tolerant bacterial isolates could be used for bioremediation of contaminated environments.

Variations of Properties and Microbial Community during Fermentation of Makgeollies by Isolated Yeasts from Traditional Makgeollies (전통막걸리에서 분리한 효모균주를 이용한 막걸리 발효과정 중의 물성 및 미생물 군집의 변화)

  • Jeon, Myong Je;Jang, Min Kyung;Lee, Sol Jee;Park, Sung Hwan;Kim, Mihyang;Sohn, Jae Hak;Lee, Han-Seung;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.23 no.6
    • /
    • pp.796-803
    • /
    • 2013
  • Property changes and bacterial characterizations by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) were investigated during the fermentation of Makgeollies by 5 isolated yeast strains. Changes of pH were large between day 0 (pH 6) and day 2 (pH 3) and showed less variation after then. ANOVA analyses revealed that pHs were statistically different with fermentation times (p<0.001), while strains (p=0.60) did not. Acidities were changed from 0.19 to 1.04% and showed rather high increase from day 2, and fermentation times (p<0.001) and strains (p=0.006) represented statistical differences. All strains showed less than 0.150% at amino-type nitrogen contents except S strain showed 0.442% at day 8, and there were no statistical differences with fermentation times (p=0.4558) and strains (p=0.3513). Saccharinities of C strain were higher from day 4, and fermentation times (p<0.0001) and strains (p=0.007) showed statistical differences. Large variation of alcohol concentrations (%) were observed between day 0 (0%) and day 2 (10%) and showed less variation after day 2, and there was no statistical difference with strains. Dominant prokaryotes were Lactobacillus fermentum and Pediococcus pentosaceus, which producing acids and functional materials. Dominant eukaryote was Saccharomyces cerevisiae, which might be resulted from addition of yeasts.

Analysis of Environmental Factors Related to Seasonal Variation of Bacteria and Heterotrophic Nanoflagellate in Kyeonggi Bay, Korea (경기만에서 박테리아와 종속영양편모류의 계절변화에 미치는 환경요인 분석)

  • Baek, Seung Ho;You, Kai;Han, Myung-Soo
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.2
    • /
    • pp.198-206
    • /
    • 2017
  • From June 2007 to May 2008, seasonal variations of bacterial abundance and heterotrophic nanoflagellate (HNF), together with environmental factors, were investigated at weekly and monthly intervals in Kyeonggi Bay. During the study period, the water temperature and salinity varied from $1.9^{\circ}C{\sim}29.0^{\circ}C$ and 31~35.1 psu, respectively. The concentration of ammonia, nitrate+nitrite, phosphate, and silicate ranged from 0.01 to $3.22{\mu}M$, 2.03 to $15.34{\mu}M$, 0.06 to $1.82{\mu}M$, and 0.03 to $18.3{\mu}M$, respectively. The annual average concentration of Chl. a varied from $0.86{\mu}g\;L^{-1}$ to $37.70{\mu}g\;L^{-1}$; the concentration was twice as much at the surface than at the deeper layers. The abundance of bacteria and HNF ranged from $0.29{\times}10^6$ to $7.62{\times}10^6cells\;mL^{-1}$ and $1.00{\times}10^2$ to $1.26{\times}10^3cells\;mL^{-1}$, respectively. In particular, there were significant correlations between bacteria and HNF abundance (p<0.05), and then the high abundance of HNF was frequently observed with an increase of bacterial abundance in summer (p<0.001). Our results therefore indicate that bacterial abundance in the bay was mainly controlled by resources supplied as organic and inorganic substances from Lake Shihwa due to the daily water exchange after dike construction. Also, the bacterial abundance was significantly controlled by HNF grazing pressure (top-down) in the warm seasons, i.e. excluding winter, in the Kyeonggi Bay.