• Title/Summary/Keyword: Microbial Characteristics

Search Result 1,297, Processing Time 0.024 seconds

A REVIEW OF THE MICROBIAL DIGESTION OF FEED PARTICLES IN THE RUMEN

  • McAllister, T.A.;Bae, H.D.;Yanke, L.J.;Cheng, K.J.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.3
    • /
    • pp.303-316
    • /
    • 1994
  • Microbial digestion of feed in the rumen involves a sequential attack culminating in the formation of fermentation products and microbial cells that can be utilized by the host animal. Most feeds are protected by a cuticular layer which is in effect a microbial barrier that must be penetrated or circumvented for digestion to proceed. Microorganisms gain access to digestible inner plant tissues through damage to the cuticle, or via natural cell openings (e.g., stomata) and commence digestion from within the feed particles. Primary colonizing bacteria adhere to specific substrates, divide to form sister cells and the resultant microcolonies release soluble substrates which attract additional microorganisms to the digestion site. These newly attracted microorganisms associate with primary colonizers to form complex multi-species consortia. Within the consortia, microorganisms combine their metabolic activities to produce the diversity of enzymes required to digest complex substrates (e.g., cellulose, starch, protein) which comprise plant tissues. Feed characteristics that inhibit the microbial processes of penetration, colonization and consortia formation can have a profound effect on the rate and extent of feed digestion in the rumen. Strategies such as feed processing or plant breeding which are aimed at manipulating feed digestion must be based on an understanding of these basic microbial processes and their concerted roles in feed digestion in the rumen.

Discovery of D-Stereospecific Dipeptidase from Thermophilic Bacillus sp. BCS-l and Its Application for Synthesis of D-Amino Acid-Containing Peptide

  • Baek, Dae-Heoun;Kwon, Seok-Joon;Park, Jin-Seo;Lee, Seung-Goo;Mheen, Tae-Ick;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.646-649
    • /
    • 1999
  • A thermophilic bacterium producing D-stereospecific dipeptidase was isolated from Korean soil samples. The enzyme hydrolyzed the peptide bond between D-alanyl-D-alanine (D-Ala-D-Ala). The isolated bacterial strain was rod shaped, gram-positive, motile, and formed an endospore. Morphological and physiological characteristics suggested this microorganism a thermophilic Bacillus species, and was named as Bacillus sp. BCS-l. The production of D-stereospecific dipeptidase was growth-associated and optimal at $55^{\circ}C$. The enzyme was applied for the synthesis of D-amino acid-containing peptide, N-benzyloxycarbonyl-L-aspartyl-D-alanine benzyl ester (Z-L-Asp-D-AlaOBzl), as a model reaction. A thermodynamically controlled synthesis of Z-L-Asp-D-AlaOBzl was achieved in an organic solvent.

  • PDF

Microbial Community Structure and Treatment Characteristics of Domestic Wastewater in the Intermittently Aerated Membrane Bioreactor (간헐포기MBR공정에서의 하수처리성능과 미생물의 군집구조해석)

  • Lim, Byung-Ran;Ahn, Kyu-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.16 no.6
    • /
    • pp.679-685
    • /
    • 2002
  • The objective of this study was investigated for the microbial community structure and treatment performance of domestic wastewater in lab-scale submerged membrane bioreactor operated with anoxic-oxic cycles. Respiratory quinone profiles were applied as tools for identifying different bacterial populations. The cycle time program of bioreactor was control under anoxic/oxic of 60/90 minutes with an hydraulic retention time of 8.4 hrs. The average $COD_{Cr}$ removal efficiency of domestic wastewater was as high as 93%. The results showed complete nitrification of $NH_4^+$-N generated during oxic period and up to 50% of the total nitrogen could be denitrified. The dominant quinone types of suspended microorganisms in bioreactor were ubiquinone (UQ)-8, -10, followed by menaquinone (MK)-6, and MK-7 for anoxic period, but those for oxic period were UQ-8, MK-6, followed by UQ-10 and MK-7. The microbial diversities of bioreactor at anoxic and oxic periods, calculated based on the composition of all quinones were 10.4 and 12.2-11.8, respectively. The experimental results showed that the microbial community structure in the submerged membrane bioreactor treating domestic wastewater was slightly affected by intermittent aeration.

Hydrogeochemical Characteristics and Microbial Community Structures of Freshwater in Ulleung Island (울릉도 담수의 수리지화학적 특성 및 미생물 군집 구조)

  • Dong-Hun Kim;Byong Wook Cho;Byeong Dae Lee;Jung-Yun Lee;Yong Hwa Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.29 no.3
    • /
    • pp.1-13
    • /
    • 2024
  • This study investigated the hydrogeochemical and microbiological characteristics of freshwater on Ulleung Island, a volcanic island in the Ulleung Basin on the East Coast of Korea. The shallow groundwater (CSW, NRGW) and the surface water (SISW) samples are classified as Na-HCO3 type, reflecting an alkaline rock type and an oxidizing environment due to the influence of a highly permeable pyroclastic rock layer. In contrast, the deep groundwater sample (DMW) is classified as Ca-HCO3 type, suggesting the influence of deep-sourced carbon dioxide and reducing conditions. Microbial communities in the water samples are generally dominated by Proteobacteria, with the relative abundance of major genera varying depending on water quality and environmental conditions. Network analysis reveals the ecological characteristics of microbial communities adapted to specific environments. The presence of pathogenic genera in the shallow groundwater suggests potential groundwater contamination, necessitating appropriate management to ensure its use as drinking water or domestic water. The findings of this study provide valuable insights into the ecological characteristics of Ulleung Island's groundwater resources and can inform future groundwater management strategies.

Characterization of Interphase Microbial Community in Luzhou-Flavored Liquor Manufacturing Pits of Various Ages by Polyphasic Detection Methods

  • Li, Hui;Huang, Jun;Liu, Xinping;Zhou, Rongqing;Ding, Xiaofei;Xiang, Qianyin;Zhang, Liqiang;Wu, Chongde
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.130-140
    • /
    • 2017
  • It is vital to understand the changing characteristics of interphase microbial communities and interspecies synergism during the fermentation of Chinese liquors. In this study, microbial communities in the three indispensable phases (pit mud, zaopei, and huangshui) of Luzhou-flavored liquor manufacturing pits and their shifts during cellars use were first investigated by polyphasic culture-independent approaches. The archaeal and eubacterial communities in the three phases were quantitatively assessed by combined phospholipid ether lipids/phospholipid fatty acid analysis and fluorescence in situ hybridization. In addition, qualitative information regarding the microbial community was analyzed by PCR-denaturing gradient gel electrophoresis. Results suggested that the interphase microbial community profiles were quite different, and the proportions of specific microbial groups evolved gradually. Anaerobic bacteria and gram-positive bacteria were dominant and their numbers were higher in pit mud ($10^9$ cells/g) than in huangshui ($10^7$ cells/ml) and zaopei ($10^7$ cells/g). Hydrogenotrophic methanogenic archaea were the dominant archaea, and their proportions were virtually unchanged in pit mud (around 65%), whereas they first increased and then decreased in zaopei (59%-82%-47%) and increased with pit age in huangshui (82%-92%). Interactions between microbial communities, especially between eubacteria and methanogens, played a key role in the formation of favorable niches for liquor fermentation. Furthermore, daqu (an essential saccharifying and fermentative agent) and metabolic regulation parameters greatly affected the microbial community.

Effects of Microbial Additives on the Chemical Characteristics, Microbes, Gas Emissions, and Compost Maturity of Hanwoo Steer Manure (미생물 첨가제가 거세한우 분의 이화학적 특성, 미생물 성상, 가스 발생량 및 퇴비 부숙도에 미치는 영향)

  • Young Ho Joo;Myeong Ji Seo;Seung Min Jeong;Ji Yoon Kim;Sam Churl Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.4
    • /
    • pp.264-269
    • /
    • 2022
  • The present study investigated effects of microbial additives on the floor of Hanwoo steer manure in barn. The treatment following: without additives (CON); additives (AMA). Each treatment used 3 barns as replication and each barn contained 5 Hanwoos. The Hanwoo steer manure in barns was sub-sampled from 5 sides of pen at 0, 4 and 12 weeks. The sub-samples were used for analyses of chemical compositions, microbial counts, gas emissions and compost maturity. The concentrations of moisture, organic matter, total nitrogen and carbon-to-nitrogen (C/N ratio) of Hanwoo steer manure before the microbial additives were each 59.1%, 83.2%, 1.78% and 50.0%, respectively. The counts of lactic acid bacteria, Yeast, Bacillus subtilis, and Escherichia coli (E. coli) were each 5.94, 6.83, 7,28 and 5.52 cfu/g, but Salmonella was not detected. The ammonia-N gas was 4.67 ppm, but hydrogen sulfide gas was not detected. After 4 weeks, moisture, organic matter, total nitrogen, pH and yeast count were lowest (p<0.05). The lactic acid bacteria, yeast, Escherichia coli (E. coli) and ammonia-N gas were not effects of microbial additives. All treatments was not detected at Salmonella count and hydrogen sulfide emission, and compost maturity was completed. After 12 weeks, the lactic acid bacteria and Bacillus subtilis were highest in AMA, while moisture, yeast and E. coli were lowest (p<0.05). The ammonia-N gas was not effect by microbial additive. Salmonella and hydrogen sulfide emission were not detected in all treatments, and compost maturity was completed. Therefore, in present study, the microbial additive did not affect of gas and compost maturity, but the pathogenic microorganism such as E. coli, were inhibited by microbial additives.

Probiotic Properties and Immunomodulator Evaluation of the Potential Feed Additive Pediococcus acidilactici SRCM102607 (잠재적 사료첨가제로서 Pediococcus acidilactici SRCM102607의 생균제 특성 및 면역활성 효과)

  • Shin, Su-Jin;Ha, Gwangsu;Jeong, Su-Ji;Ryu, Myeong Seon;Kim, Jinwon;Yang, Hee-Jong;Kwak, Mi-Sun;Sung, Moon-Hee;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.30 no.10
    • /
    • pp.896-904
    • /
    • 2020
  • The purpose of this study was to investigate the probiotic characteristics and immune activities of selected lactic acid bacterial (LAB) strains as feed additives in livestock. 301 LAB strains isolated from traditional fermented foods were first assessed for their antibacterial activity potential. Of the 301 isolates, five showed antibacterial activity against five livestock pathogens (Esherichia coli KCCM11234, Listeria monocytogens KCTC3710, Salmonella Typhimurium KCTC1926, Staphylococcus aureus KCCM11593, and Shigella flexneri KCTC2517). The probiotic characteristics of the five selected strains were also investigated by antioxidative activity, hemolysis, bile salt hydrolase, acid resistance and bile tolerance. The SRCM102607 strain was found to have superior probiotic properties and was selected for further experimentation. 16S rRNA gene sequencing showed that SRCM102607 is Pediococcus acidilactici, which was labeled as P. acidilactici SRCM102607 (KCCM 12246P). The survival characteristics of P. acidilactici SRCM102607 in artificial gastrointestinal conditions were assessed under exposed acidic (pH 2.0) and bile (0.5% and 1.0%) conditions. P. acidilactici SRCM102607 was also confirmed to have resistance to various antibiotics, including amikacin, gentamicin, vancomycin, and etc. The TNF-α production by P. acidilactici SRCM102607 was 171.86±4.00 ng/ml. These results show that P. acidilactici RCM102607 has excellent potential for use as a probiotic livestock feed additive.

Characterization of Microbial Fuel Cells Enriched Using Cr(VI)-Containing Sludge

  • Ryu, Eun-Yeon;Kim, Mi-A;Lee, Sang-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.187-191
    • /
    • 2011
  • Microbial fuel cells (MFCs) were successfully enriched using sludge contaminated with Cr(VI) and their characteristics were investigated. After enrichment, the charge of the final 10 peaks was 0.51 C ${\pm}$ 1.16%, and the anodic electrode was found to be covered with a biofilm. The enriched MFCs removed 93% of 5 mg/l Cr(VI) and 61% of 25 mg/l Cr(VI). 16S rDNA DGGE profiles from the anodic electrode indicated that ${\beta}$-Proteobacteria, Actinobacteria, and Acinetobacter sp. dominated. This study is the first to report that electrochemically active and Cr(VI)-reducing bacteria could be enriched in the anode compartment of MFCs using Cr(VI)-containing sludge and demonstrates the Cr(VI) removal capability of such MFCs.

Application of Phytase, Microbial or Plant Origin, to Reduce Phosphorus Excretion in Poultry Production

  • Paik, InKee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.124-135
    • /
    • 2003
  • In order to prevent pollution from animal waste, the excretion of nutrients should be reduced through proper nutritional management. Among the many nutrients of concern, such as N, P, Cu, Zn and K, P is one of the most concerned nutrients to be managed. Seven feeding trials, three with layers and four with broilers, were conducted to determine if microbial phytase supplementation can reduce non-phytate phosphorus (NPP) level in diets and results in concomitant reductions of P excretion. The results showed that microbial phytase can be successfully used to achieve these purposes. Activity of natural phytase in certain plant feedstuffs is high enough to be considered in feed formulation. Three experiments have been conducted to study the characteristics of plant phytase and its application to feeding of broilers. Selected brands of wheat bran could be successfully used as a source of phytase in broiler feeding.

Studies on Screening and Isolation of Esterase Inhibitors from Soil Microorganisms(I).Identification of strain DMC-498 producing esterase inhibitors

  • Lee, Seung-Jung;Kim, Ha-Won;Choi, Chil-Choi;Kim, Byong-Kak
    • Archives of Pharmacal Research
    • /
    • v.10 no.2
    • /
    • pp.103-109
    • /
    • 1987
  • To find microorganisms producing esterase inhibitors, microbes were isolated from soil samples that were collected at different locations in Korea and screened for inhibitory activities. One of the inhibitor-producing strains was named strain DMC-498. This strain was found to be a new species of the genus Streptomyces by comparison with the characteristics of morphology and metabolisms of the other species of the genus.

  • PDF