• Title/Summary/Keyword: Microbial ATP

Search Result 51, Processing Time 0.026 seconds

Potential Meso-scale Coupling of Benthic-Pelagic Production in the Northeast Equatorial Pacific (북동 적도 태평양에서 수층 기초 생산력과 심해저 퇴적물내 미생물 생산력과의 상관성)

  • Kim, Kyeong-Hong;Son, Ju-Won;Son, Seung-Kyu;Chi, Sang-Bum;Hyun, Jung-Ho
    • Ocean and Polar Research
    • /
    • v.33 no.1
    • /
    • pp.21-34
    • /
    • 2011
  • We determined potential meso-scale benthic-pelagic ecosystem coupling in the north equatorial Pacific by comparing surface chl-a concentration with sediment bacterial abundance and adenosine triphosphate (ATP) concentration (indication of active biomass). Water and sediment samples were latitudinally collected between 5 and $11^{\circ}N$ along $131.5^{\circ}W$. Physical water properties of this area are characterized with three major currents: North Equatorial Current (NEC), North Equatorial Count Current (NECC), and South Equatorial Current (SEC). The divergence and convergence of the surface water occur at the boundaries where these currents anti-flow. This low latitude area ($5{\sim}7^{\circ}N$) appears to show high pelagic productivity (mean phytoplankton biomass=$1266.0\;mgC\;m^{-2}$) due to the supplement of high nutrients from nutrient-enriched deep-water via vertical mixing. But the high latitude area ($9{\sim}11^{\circ}N$) with the strong stratification exhibits low surface productivity (mean phytoplankton biomass=$603.1\;mgC\;m^{-2}$). Bacterial cell number (BCN) and ATP appeared to be the highest at the superficial layer and reduced with depth of sediment. Latitudinally, sediment BCN from low latitude ($5{\sim}7^{\circ}N$) was $9.8{\times}10^8\;cells\;cm^{-2}$, which appeared to be 3-times higher than that from high latitude ($9{\sim}11^{\circ}N$; $2.9{\times}10^8\;cells\;cm^{-2}$). Furthermore, sedimentary ATP at the low latitude ($56.2\;ng\;cm^{-2}$) appeared to be much higher than that of the high latitude ($3.3\;ng\;cm^{-2}$). According to regression analysis of these data, more than 85% of the spatial variation of benthic microbial biomass was significantly explained by the phytoplankton biomass in surface water. Therefore, the results of this study suggest that benthic productivity in this area is strongly coupled with pelagic productivity.

GTG as a Potential Translation Initiation Godon in Mitochondrial F1 ATPase $\alpha$-Subunit Gene(atpA) of Korean Ginseng (고려인삼의 $F_1$ ATPase $\alpha$-Subunit 유전자(atpA)의 구조적 특성)

  • Kim, Kab-Sig;Park, Ui-Sun;Choi, Kwan-Sam;Choi, Kwang-Tae
    • Journal of Ginseng Research
    • /
    • v.19 no.2
    • /
    • pp.127-133
    • /
    • 1995
  • The complete open reading frame (ORF) of o-subunit of the $F_1$ ATP synthase (atPA) in Korean ginseng mitochondria was identified by the sequence similarity with atPA genes in other plant mitochondria. The sequence alignment showed that the common translation initiation codon, ATG, in plant genes was replaced with GTG valid codon in Korean ginseng. The atPA gene from GTG to TGA termination codon was 1524 nucleotides long, and the sequence homology of nucleotides and deduced amino acids revealed high values of 92~97%. A deletion event of 6 nucleotides was observed at the 1468th nucleotide from the GTG in Korean ginseng, in contrast to that at the 1450th in other plants such as pea, common bean, soybean, sugar beet, and radish. An unidentified open reading frame (on7) was observed upstream of atmA ORF. No other ATG as an initiation codon was detected in the region between off and atmA ORF in Korean ginseng, although a pyrimidine cluster "TTTTCTTTT" was located in this region as in Oenothera and maize genes. It could be supposed that GTG codon in atpA gene of Korean ginseng mitochondria would act as an initiation codon as in microbial genes.ial genes.

  • PDF

Metagenomic and Proteomic Analyses of a Mangrove Microbial Community Following Green Macroalgae Enteromorpha prolifera Degradation

  • Wu, Yijing;Zhao, Chao;Xiao, Zheng;Lin, Hetong;Ruan, Lingwei;Liu, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2127-2137
    • /
    • 2016
  • A mangrove microbial community was analyzed at the gene and protein levels using metagenomic and proteomic methods with the green macroalgae Enteromorpha prolifera as the substrate. Total DNA was sequenced on the Illumina HiSeq 2000 PE-100 platform. Two-dimensional gel electrophoresis in combination with liquid chromatography tandem mass spectrometry was used for proteomic analysis. The metagenomic data revealed that the orders Pseudomonadales, Rhizobiales, and Sphingomonadales were the most prevalent in the mangrove microbial community. By monitoring changes at the functional level, proteomic analyses detected ATP synthase and transporter proteins, which were expressed mainly by members of the phyla Proteobacteria and Bacteroidetes. Members of the phylum Proteobacteria expressed a high number of sugar transporters and demonstrated specialized and efficient digestion of various glycans. A few glycoside hydrolases were detected in members of the phylum Firmicutes, which appeared to be the main cellulose-degrading bacteria. This is the first report of multiple "omics" analysis of E. prolifera degradation. These results support the fact that key enzymes of glycoside hydrolase family were expressed in large quantities, indicating the high metabolic activity of the community.

A Strategy to Increase Microbial Hydrogen Production, Facilitating Intracellular Energy Reserves

  • Lee, Hyo Jung;Park, Jihoon;Lee, Joo-Young;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1452-1456
    • /
    • 2016
  • Overexpression of the genes encoding phosphoeneolpyruvate carboxykinase (pckA) and NAD-dependent malic enzyme (maeA) facilitates higher intracellular ATP and NAD(P)H concentrations, respectively, under aerobic conditions in Escherichia coli. To verify a hypothesis that higher intracellular energy reserves might contribute to H2 fermentation, wild-type E. coli strains overexpressing pckA and maeA were cultured under anaerobic conditions in a glucose minimal medium. Overexpression of pckA and maeA enabled E. coli to produce 3-times and 4-times greater H2 (193 and 284 nmol, respectively) than the wild type (66 nmol H2). The pckA and maeA genes were further overexpressed in a hydrogenase-3-enhanced E. coli strain. The hydrogenase-3-enhanced strain (W3110+fhlA) produced 322 nmol H2, whereas the ATP-enhanced strain (W3110+fhlA+pckA) produced 50% increased H2 (443 nmol). Total H2 in the NAD(P)H-enhanced strain (W3110+fhlA+maeA) was similar to that in the control strain at 319 nmol H2. Possible explanations for the contribution of the increased cellular energy reserves to the enhanced hydrogen fermentation observed are discussed based on the viewpoint of metabolic engineering strategy.

Exploring a zero food waste system for sustainable residential buildings in urban areas

  • Oh, Jeongik;Lee, Hyunjeong
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.46-53
    • /
    • 2018
  • This study explores the environmentally innovative and low-impact technology, a zero food waste system (ZFWS) that utilizes food waste and converts it into composts or biofuels and curtails carbon emissions. The ZFWS not just achieves food waste reductions but recycles food waste into fertilizer. Based on a fermentation-extinction technique using bio wood chips, the ZFWS was employed in a field experiment of the system installed in a large-scale apartment complex, and the performance of the system was examined. The on-site ZFWS consisted of three primary parts: 1) a food waste slot into which food waste was injected; 2) a fermentation-extinction reactor where food waste was mixed with bio wood chips made up of complex enzyme and aseptic wood chips; and 3) deodorization equipment in which an ultraviolet and ozone photolysis method was employed. The field experiment showed that food waste injected into the ZFWS was reduced by 94%. Overall microbial activity of the food waste in the fermentation-extinction reactor was measured using adenosine tri-phosphate (ATP), and the degradation rate of organic compounds, referred to as volatile solids, increased with ATP concentration. The by-products generated from ZFWS comply with the national standard for organic fertilizer.

E3 ligase BRUTUS Is a Negative Regulator for the Cellular Energy Level and the Expression of Energy Metabolism-Related Genes Encoded by Two Organellar Genomes in Leaf Tissues

  • Choi, Bongsoo;Hyeon, Do Young;Lee, Juhun;Long, Terri A.;Hwang, Daehee;Hwang, Inhwan
    • Molecules and Cells
    • /
    • v.45 no.5
    • /
    • pp.294-305
    • /
    • 2022
  • E3 ligase BRUTUS (BTS), a putative iron sensor, is expressed in both root and shoot tissues in seedlings of Arabidopsis thaliana. The role of BTS in root tissues has been well established. However, its role in shoot tissues has been scarcely studied. Comparative transcriptome analysis with shoot and root tissues revealed that BTS is involved in regulating energy metabolism by modulating expression of mitochondrial and chloroplast genes in shoot tissues. Moreover, in shoot tissues of bts-1 plants, levels of ADP and ATP and the ratio of ADP/ATP were greatly increased with a concomitant decrease in levels of soluble sugar and starch. The decreased starch level in bts-1 shoot tissues was restored to the level of shoot tissues of wild-type plants upon vanadate treatment. Through this study, we expand the role of BTS to regulation of energy metabolism in the shoot in addition to its role of iron deficiency response in roots.

Evaluation of environmental surface contamination and disinfection effects on multidrug-resistant organism (다제내성균 환경표면 오염도 및 소독 효과 평가)

  • Kim, Jae Yeun;Park, Jung Ae;Lee, Mi Hyang;Kim, Sang Ha;Jeong, Sun Young
    • Journal of Digital Convergence
    • /
    • v.19 no.1
    • /
    • pp.211-216
    • /
    • 2021
  • This study was carried out to evaluate the effects of disinfection using environmental disinfectant after having assessed the extent of contamination through microbial culture testing and the Adenosine Triphosphate Bioluminescence method among the environmental management evaluation methods used for the environment in the hospital ward of patients infected by multidrug-resistant organisms. This study was conducted with the patient wards isolated due to multidrug-resistant organisms as the environmental surface. Specimens were collected from five locations including infusion pumps, IV poles, bedside cabinets, bed railings, keyboards, and blood pressure measurement cuffs. ATP and microbial culture testing were executed prior to, immediately after, and five minutes post-disinfection. According to the result contamination of the infusion pumps was statistically significantly reduced after disinfection. In addition, the bacteria before and after disinfection reduced in IV pole, bed railing, and keyboard. That is, regular environmental surface disinfection can provide safer environments to patients against infection. Therefore, it is necessary to establish guidelines including disinfection methods and intervals for environmental surfaces by evaluating the persistence of disinfectants at various institutions in the future.

Glutamine Synthetase of some Fermentation Bacteria: Function and Application

  • Tachiki, Takashi
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.506-508
    • /
    • 1986
  • Metabolic activity of inorganic nitrogenous compounds affects not only microbial growth but also metabolite production in fermentation technology. We have worked on the enzymes participating in ammonia assimulation of some fermentation bacteria. This paper summarizes the results on glutamine synthetase and its application in practical field. Glutamine synthetase (L-glutamate:ammonia ligase, EC. 6.3.1.2) catalyzes the formation of glutamine from glutamate and ammonia at the expense of cleavage of ATP and inorganic phosphate. The enzyme plays a dual role in nitrogen metabolism in bacteria; it is a key enzyme not only in the biosynthesis of various compounds through glutamine but also in the regulation of synthesis of some enzymes involved in the metabolism of nitrogenous compounds. The detailed works with the Eschericia coli and other enterobacterial enzymes revealed that glutamine synthetase is controlled by the following complex of mechanisms: (a) feedback inhibition by end products, (b) repression and derepression of enzyme synthesis, (c) modulation of enzyme activity in response to divalent cation and (d) covalent modification of enzyme protein by adenylylation and its cascade control. Comparative studies have also been made on the enzymes from other organisms.

  • PDF

Efficiency of Hurdle Technology Applied to Raw Cured Meat (Si-Raw)Processing

  • Chen, Ming-Tsao;Lin, Young-Sun;Tsai, Hung-Tsung;Kuo, Hsiu-Lan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.11
    • /
    • pp.1646-1652
    • /
    • 2002
  • Si-Raw is a raw cured meat (raw, cured meat fermented with steamed rice) produced by the aboriginal people of Taiwan. In order to prevent food poisoning or intoxication from botulism, new methods of monitoring the production base on hurdle technology were investigated. New methods investigated incorporated citric acid, sodium hypophosphite, Monascus anka mash, plum paste or lactic acid bacteria inoculum added separately to meat with steamed rice and salt to lower the Aw (water activity) and pH values of the products to control the microbial growth. Results showed that anaerobic bacterial counts, lactic acid bacterial counts and aerobic bacterial counts for the products of all treatments were less than $10^6$, $10^5$ and $10^2cfu/g$, respectively. Sodium chloride content of all products was above 5.46%, water activity was below 0.939 and pH value was below 4.27. IMP was lower and ATP and hypoxanthine were higher. ATP concentrations were higher in the samples which contained the anka mash. Result of sensory panel test indicated that most people preferred the products with added sodium hypophosphite. Except for the fact that the content of tryptamine in the sample with Monascus anka mash was higher, the amine concentrations for all treatments were lower than those of other fermented meat products. The amino acid nitrogen content was higher in the product made from raw meat treated with citric acid, but lower in the other products. Neither Clostridium botulinum nor Trichinella spiralis were detected in any of the treatments. The result may indicate that hurdle technology is effective for hygiene and safe producing Si-Raw.

A novel retentive type of dental implant prosthesis: marginal fitness of the cementless double crown type implant prosthesis evaluated by bacterial penetration and viability

  • Hong, Seoung-Jin;Kwon, Kung-Rock;Jang, Eun-Young;Moon, Ji-Hoi
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.4
    • /
    • pp.233-238
    • /
    • 2020
  • PURPOSE. This study aims to compare the marginal fitness of two types of implant-supported fixed dental prosthesis, i.e., cementless fixation (CL.F) system and cement-retained type. MATERIALS AND METHODS. In each group, ten specimens were assessed. Each specimen comprised implant lab analog, titanium abutment fabricated with a 2-degree tapered axial wall, and zirconia crown. The crown of the CL.F system was retained by frictional force between abutment and relined composite resin. In the cement-retained type, zinc oxide eugenol cement was used to set crown and abutment. All specimens were sterilized with ethylene oxide, immersed in Prevotella intermedia culture in a 50 mL tube, and incubated with rotation. After 48 h, the specimens were washed thoroughly before separating the crown and abutment. The bacteria that penetrated into the crown-abutment interface were collected by washing with 500 µL of sterile saline. The bacterial cell number was quantified using the agar plate count technique. The BacTiter-Glo Microbial Cell Viability Assay Kit was used to measure bacterial adenosine triphosphate (ATP)-bioluminescence, which reflects the bacterial viability. The t-test was performed, and the significance level was set at 5%. RESULTS. The number of penetrating bacterial cells assessed by colony-forming units was approximately 33% lower in the CL.F system than in the cement-retained type (P<.05). ATP-bioluminescence was approximately 41% lower in the CL.F system than in the cement-retained type (P<.05). CONCLUSION. The CL.F system is more resistant to bacterial penetration into the abutment-crown interface than the cement-retained type, thereby indicating a precise marginal fit.