• Title/Summary/Keyword: Microalgal Species

Search Result 63, Processing Time 0.015 seconds

Investigation on Media Composition for Cultivation of a Newly Isolated Freshwater Microalga Parachlorella sp. to Enhance Fatty Acid Productivity (신규 분리된 담수미세조류 Parachlorella sp.의 지방산 생산성 향상을 위한 배지 조성 연구)

  • Park, Hanwool;Yim, Kyung June;Min, Ji-Ho;Kang, Sung-Mo;Han, Chan-woo;Lee, Chang-Soo;Jung, Ji Young;Hong, Seong-Joo;Lee, Choul-Gyun;Kim, Z-Hun
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.328-336
    • /
    • 2020
  • Parachlorella sp. is an efficient fatty acid producer that can be used in the production of biofuels, feeds, and fertilizers. Microalgae show varying responses to culture conditions, even those within the same species. In this study, growth and fatty acid composition of a newly isolated Parachlorella sp. from the Nakdong river of Korea in different culture media were investigated. The microalga was cultivated in 400 ml bubble column photobioreactors using BG-11, BBM, TAP, and modified TAP (MTAP) media. It was shown that using BBM led to greater fatty acid accumulation (34%), while using TAP medium led to greater biomass productivity (0.34 g/l/day). Composition of the TAP medium was modified to have the N:P ratio of BBM while also varying concentrations of N and P to improve fatty acid productivity. One of the modified TAP media, MTAP-1 (104.8 mgN/l, 135.2 mgP/l, N:P ratio = 0.77), showed the highest fatty acid concentration of 0.69 ± 0.04 g/l, while those from TAP and BBM were 0.48 ± 0.06 g/l and 0.40 ± 0.02 g/l, respectively. The results showed that microalgal fatty acid productivity could be enhanced by changing the N:P ratio and concentrations.

Temporal and Spatial Variation of Microalgal Biomass and Community Structure in Seawater and Surface Sediment of the Gomso Bay as Determined by Chemotaxonomic Analysis (색소분석을 통한 곰소만 내 해수와 퇴적물 중 미세조류 생체량과 군집구조의 시공간적 변화)

  • Lee, Yong-Woo;Park, Mi-Ok;Yoon, Ji-Hyun;Hur, Sung-Bum
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.2
    • /
    • pp.87-94
    • /
    • 2012
  • To compare monthly variations of phytoplankton biomass and community composition between in seawater and sediment of the Gomso Bay (tidal flat: approximately 75%), the photosynthetic pigments were analyzed by HPLC every month in 1999 and every two months in 2000. Ambient physical and chemical parameters (temperature, salinity, nutrients, dissolved oxygen, and chemical oxygen demand) were also examined to find the environmental factors controlling structure of phytoplankton community. The temporal and spatial variations of chlorophyll a concentration in seawater were correlated well with the magnitude of freshwater discharge from land. The biomass of microphytobenthos at the surface sediments was lower than that in other regions of the world and 2-3 times lower than phytoplankton biomass integrated in the seawater column. Based on the results of HPLC pigment analysis, fucoxanthin, a marker pigment of diatoms, was the most prominent pigment and highly correlated with chlorophyll a in seawater and sediment of the Gomso Bay. These results suggest that diatoms are the predominant phytoplankton in seawater and sediment of the Gomso Bay. However, the monthly variation of chlorophyll a concentration in seawater at the subtidal zone was not a good correlation with that in sediment of the Gomso Bay. Although pelagic plankton was identified in seawater by microscopic examination, benthic algal species were not found in the seawater. These results suggest that contribution from the suspended microphytobenthos in the tidal flat to the subtidal zone of the Gomso Bay may be low as a food source to the primary consumer in the upper water column of the subtidal zone. Further study needs to elucidate the vertical and horizontal transport magnitude of the suspended microphytobenthos in the tidal flat to the subtidal zone.

Description and Application of a Marine Microalga Auxenochlorella protothecoides Isolated from Ulleung-do (울릉도 거북바위 조수웅덩이에서 분리된 해양 미세조류 옥세노클로렐라 프로토테코이드 균주의 기술 및 응용)

  • Jang, Hyeong Seok;Kang, Nam Seon;Kim, Kyeong Mi;Jeon, Byung Hee;Park, Joon Sang;Hong, Ji Won
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1152-1160
    • /
    • 2017
  • A unicellular green alga was axenically isolated from a tidal pool on Ulleung-do, Korea. Morphological, molecular, and biochemical analyses revealed that the isolate belonged to Auxenochlorella protothecoides. The current study is the first record of this species in Korea. The microalgal strain was named as A. protothecoides MM0011 and its growth, lipid and pigment compositions, and biomass properties were investigated. The strain is able to thrive in a wide range of temperatures ($5{\sim}35^{\circ}C$) and to withstand up to 1.5 M NaCl. The results of GC/MS analysis showed that the isolate was rich in nutritionally important polyunsaturated fatty acids (PUFAs). Its major fatty acids were linoleic acid (27.6%) and ${\alpha}-linolenic$ acid (39.6%). Thus, this indigenous microalga has potential as an alternative source of ${\omega}3$ and ${\omega}6$ PUFAs, which currently come from fish and plant oils. Also, the HPLC analysis revealed that the value-added antioxidant, lutein, was biosynthesized as the accessory pigments by the microalga. A proximate analysis showed that the volatile matter content was 85.6% and an ultimate analysis indicated that the gross calorific value was $20.3MJ\;kg^{-1}$. Since 40.5% of total nitrogen and 27.9% of total phosphorus were removed from the medium, respectively, it also has potential as a feedstock for biofuel applications which could be coupled to wastewater treatment. In addition, the biomass may also serve as an excellent animal feed because of its high protein content (51.4%). Therefore, A. protothecoides MM0011 shows promise for application in production of microalgae-based biochemicals and as a biomass feedstock.