DOI QR코드

DOI QR Code

Investigation on Media Composition for Cultivation of a Newly Isolated Freshwater Microalga Parachlorella sp. to Enhance Fatty Acid Productivity

신규 분리된 담수미세조류 Parachlorella sp.의 지방산 생산성 향상을 위한 배지 조성 연구

  • Park, Hanwool (Department of Marine Science and Biological Engineering, Inha University) ;
  • Yim, Kyung June (Microbial Research Department, Nakdonggang National Institute of Biological Resources) ;
  • Min, Ji-Ho (Department of Marine Science and Biological Engineering, Inha University) ;
  • Kang, Sung-Mo (Institute of Industrial Biotechnology, Inha University) ;
  • Han, Chan-woo (Department of Marine Science and Biological Engineering, Inha University) ;
  • Lee, Chang-Soo (Microbial Research Department, Nakdonggang National Institute of Biological Resources) ;
  • Jung, Ji Young (Microbial Research Department, Nakdonggang National Institute of Biological Resources) ;
  • Hong, Seong-Joo (Department of Marine Science and Biological Engineering, Inha University) ;
  • Lee, Choul-Gyun (Department of Marine Science and Biological Engineering, Inha University) ;
  • Kim, Z-Hun (Microbial Research Department, Nakdonggang National Institute of Biological Resources)
  • 박한울 (인하대학교 해양과학.생물공학과) ;
  • 임경준 (국립낙동강생물자원관, 미생물연구실) ;
  • 민지호 (인하대학교 해양과학.생물공학과) ;
  • 강성모 (인하대학교 생물산업기술연구소) ;
  • 한찬우 (인하대학교 해양과학.생물공학과) ;
  • 이창수 (국립낙동강생물자원관, 미생물연구실) ;
  • 정지영 (국립낙동강생물자원관, 미생물연구실) ;
  • 홍성주 (인하대학교 해양과학.생물공학과) ;
  • 이철균 (인하대학교 해양과학.생물공학과) ;
  • 김지훈 (국립낙동강생물자원관, 미생물연구실)
  • Received : 2019.12.23
  • Accepted : 2020.04.08
  • Published : 2020.09.28

Abstract

Parachlorella sp. is an efficient fatty acid producer that can be used in the production of biofuels, feeds, and fertilizers. Microalgae show varying responses to culture conditions, even those within the same species. In this study, growth and fatty acid composition of a newly isolated Parachlorella sp. from the Nakdong river of Korea in different culture media were investigated. The microalga was cultivated in 400 ml bubble column photobioreactors using BG-11, BBM, TAP, and modified TAP (MTAP) media. It was shown that using BBM led to greater fatty acid accumulation (34%), while using TAP medium led to greater biomass productivity (0.34 g/l/day). Composition of the TAP medium was modified to have the N:P ratio of BBM while also varying concentrations of N and P to improve fatty acid productivity. One of the modified TAP media, MTAP-1 (104.8 mgN/l, 135.2 mgP/l, N:P ratio = 0.77), showed the highest fatty acid concentration of 0.69 ± 0.04 g/l, while those from TAP and BBM were 0.48 ± 0.06 g/l and 0.40 ± 0.02 g/l, respectively. The results showed that microalgal fatty acid productivity could be enhanced by changing the N:P ratio and concentrations.

본 연구에서는 국내 낙동강 수계에서 신규하게 분리된 미세조류인 Parachlorella sp. 종의 바이오매스 및 지방산 생산성에 대한 배지의 영향을 연구하였다. 미세조류 배양에 통상적으로 사용되는 BG-11, TAP, BBM 배지를 사용하여 바이오매스 생산성은 TAP 배지에서, 지방산 축적은 BBM 배지에서 가장 잘 일어나는 것으로 확인되었고, 지방산 생산성을 향상시키기 위해 암모니아와 아세트산을 사용하는 TAP 배지의 조성을 변화하여 BBM 배지처럼 지방산 축적을 유도하며 바이오매스 생산성을 증가시킨 MTAP 배지를 개발하였다. 전체적인 바이오매스와 지방산 생산성을 높이기 위해서는 MTAP-1 배지가 적합하여 바이오매스 생산성과 지방산 생산성은 기존의 TAP 배지 대비 각각 14%, 45% 증가하였다. 생리 활성 효과로 인해 관심도가 높은 오메가-3 지방산의 생산에는 MTAP-4 배지가 가장 적합하여 바이오매스 생산성과 오메가-3 지방산 생산성이 기존 BBM 배지 대비 각각 18%, 39% 증가하여 목표 중점 생산물질(바이오매스, 총 지방산, 또는 오메가-3 지방산)의 생산성을 향상시킬 수 있는 신규 배지 2종의 조성을 개발하였다.

Keywords

References

  1. Park H, Lee CG. 2016. Theoretical calculations on the feasibility of microalgal biofuels: utilization of marine resources could help realizing the potential of microalgae. Biotechnol. J. 11: 1461-1470. https://doi.org/10.1002/biot.201600041
  2. Kang Z, Kim BH, Oh HM, Kim HS. 2013. Production of biodiesel and nutrient removal of municipal wastewater using a small scale raceway pond. Microbiol. Biotechnol. Lett. 41: 207-214. https://doi.org/10.4014/kjmb.1301.01001
  3. Kassim MA, Rashid MA, Halim R. 2017. Towards biorefinery production of microalgal biofuels and bioproducts: Production of acetic acid from the fermentation of Chlorella sp. and Tetraselmis suecica hydrolysates. Green Sust. Chem. 7: 152-171. https://doi.org/10.4236/gsc.2017.72012
  4. Joe MH, Kim DH, Choi DS, Bai S. 2018. Optimization of phototrophic growth and lipid production of a newly isolated microalga, Desmodesmus sp. KAERI-NJ5. Microbiol. Biotechnol. Lett. 46: 377-389. https://doi.org/10.4014/mbl.1808.08003
  5. Mahdieh M, Shabani S, Amirjani M. 2019. Characterization of the growth, total lipid and fatty acid profiles in microalga, Nannochloropsis oceanica under different nitrogen sources. Microbiol. Biotechnol. Lett. 46: 11-19. https://doi.org/10.4014/mbl.1801.01004
  6. Park H, Hoh D, Shin DW, Kim ZH, Hong SJ, Lim SM, et al. 2019. Isolation and characterization of five isolates of Tetraselmis sp. with rapid growth rates in low temperatures. J. Mar. Biosci. Biotechnol. 11: 23-28. https://doi.org/10.15433/KSMB.2019.11.1.023
  7. Baer S, Heining M, Schwerna P, Buchholz R, Hubner H. 2016. Optimization of spectral light quality for growth and product formation in different microalgae using a continuous photobioreactor. Algal Res. 14: 109-115. https://doi.org/10.1016/j.algal.2016.01.011
  8. Shin DW, Bae JH, Cho Y, Ryu YJ, Kim ZH, Lim SM, et al. 2016. Isolation of new microalga, Tetraselmis sp. KCTC12236BP, and biodiesel production using its biomass. J. Mar. Biosci. Biotechnol. 8: 39-44. https://doi.org/10.15433/ksmb.2016.8.1.039
  9. Hong SJ, Park YS, Han MA, Kim ZH, Cho BK, Lee H, et al. 2017. Enhanced production of fatty acids in three strains of microalgae using a combination of nitrogen starvation and chemical inhibitors of carbohydrate synthesis. Biotechnol. Bioprocess Eng. 22: 60-67. https://doi.org/10.1007/s12257-016-0575-9
  10. Recht L, Zarka A, Boussiba S. 2012. Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. App. Microbiol. Biotechnol. 94: 1495-1503. https://doi.org/10.1007/s00253-012-3940-4
  11. Kim DK, Hong SJ, Bae JH, Yim N, Jin E, Lee CG. 2011. Transcriptomic analysis of Haematococcus lacustris during astaxanthin accumulation under high irradiance and nutrient starvation. Biotechnol. Bioprocess Eng. 16: 698. https://doi.org/10.1007/s12257-011-0081-z
  12. Park S, Lee Y, Jin E. 2013. Comparison of the responses of two Dunaliella strains, Dunaliella salina CCAP 19/18 and Dunaliella bardawil to light intensity with special emphasis on carotenogenesis. Algae 28: 203-211. https://doi.org/10.4490/algae.2013.28.2.203
  13. Lamers PP, Janssen M, De Vos RC, Bino RJ, Wijffels RH. 2012. Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. J. Biotechnol. 162: 21-27. https://doi.org/10.1016/j.jbiotec.2012.04.018
  14. Li X, Pribyl P, Bisova K, Kawano S, Cepak V, Zachleder V, Cizkova M, et al. 2013. The microalga Parachlorella kessleri--A novel highly efficient lipid producer. Biotechnol. Bioeng. 110: 97-107. https://doi.org/10.1002/bit.24595
  15. Heo J, Cho DH, Ramanan R, Oh HM, Kim HS. 2015. PhotoBiobox: A tablet sized, low-cost, high throughput photobioreactor for microalgal screening and culture optimization for growth, lipid content and $CO_2$ sequestration. Biochem. Eng. J. 103: 193-197. https://doi.org/10.1016/j.bej.2015.07.013
  16. Lee SH, Ahn CY, Jo BH, Lee SA, Park JY, An KG, et al. 2013. Increased microalgae growth and nutrient removal using balanced N: P ratio in wastewater. J. Microbiol. Biotechnol. 23: 92-98. https://doi.org/10.4014/jmb.1210.10033
  17. Karapinar Kapdan I, Aslan S. 2008. Application of the Stover-Kincannon kinetic model to nitrogen removal by Chlorella vulgaris in a continuously operated immobilized photobioreactor system. J. Chem. Technol. Biot. 83: 998-1005. https://doi.org/10.1002/jctb.1905
  18. Mandalam RK, Palsson B. 1998. Elemental balancing of biomass and medium composition enhances growth capacity in high-density Chlorella vulgaris cultures. Biotechnol. Bioeng. 59: 605-611. https://doi.org/10.1002/(SICI)1097-0290(19980905)59:5<605::AID-BIT11>3.0.CO;2-8
  19. Zhu S, Huang W, Xu J, Wang Z, Xu J, Yuan Z. 2014. Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresour. Technol. 152: 292-298. https://doi.org/10.1016/j.biortech.2013.10.092
  20. Lee HS, Kim ZH, Park H, Lee CG. 2016. Specific light uptake rates can enhance astaxanthin productivity in Haematococcus lacustris. Bioprocess Biosyst. Eng. 39: 815-823. https://doi.org/10.1007/s00449-016-1561-5
  21. Sanz-Luque E, Chamizo-Ampudia A, Llamas A, Galvan A, Fernandez E. 2015. Understanding nitrate assimilation and its regulation in microalgae. Front. Plant Sci. 6: 899. https://doi.org/10.3389/fpls.2015.00899
  22. Chalima A, Oliver L, Fernandez de Castro L, Karnaouri A, Dietrich T, Topakas E. 2017. Utilization of volatile fatty acids from microalgae for the production of high added value compounds. Fermentation 3: 54. https://doi.org/10.3390/fermentation3040054
  23. Bourre J. 2005. Where to find omega-3 fatty acids and how feeding animals with diet enriched in omega-3 fatty acids to increase nutritional value of derived products for human: what is actually useful. J. Nutr. Health. Aging 9: 232-242.
  24. Simopoulos AP. 2003. Importance of the ratio of omega-6/omega-3 essential fatty acids: evolutionary aspects. pp. 1-22. Omega-6/omega-3 essential fatty acid ratio: The scientific evidence. Karger Publishers, City.
  25. Ponnampalam E, Mann N, Sinclair A. 2006. Effect of feeding systems on omega-3 fatty acids, conjugated linoleic acid and trans fatty acids in Australian beef cuts: potential impact on humnan health. Asia Pac. J. Clin. Nutr. 15: 21-29.
  26. Sayanova O, Mimouni V, Ulmann L, Morant-Manceau A, Pasquet V, Schoefs B, et al. 2017. Modulation of lipid biosynthesis by stress in diatoms. Philos. Trans. R. Soc. B. Biol. Sci. 372: 20160407. https://doi.org/10.1098/rstb.2016.0407
  27. Pereira SL, Leonard AE, Mukerji P. 2003. Recent advances in the study of fatty acid desaturases from animals and lower eukaryotes. Prostaglandins Leukot. Essent. Fatty Acids 68: 97-106. https://doi.org/10.1016/S0952-3278(02)00259-4
  28. Sasaki M, Takagi A, Ota S, Kawano S, Sasaki D, Asayama M. 2020. Coproduction of lipids and extracellular polysaccharides from the novel green alga Parachlorella sp. BX1. 5 depending on cultivation conditions. Biotechnol. Rept. 25: e00392. https://doi.org/10.1016/j.btre.2019.e00392
  29. Taleb A, Legrand J, Takache H, Taha S, Pruvost J. 2018. Investigation of lipid production by nitrogen-starved Parachlorella kessleri under continuous illumination and day/night cycles for biodiesel application. J. Appl. Phycol. 30: 761-772. https://doi.org/10.1007/s10811-017-1286-0