References
- Park H, Lee CG. 2016. Theoretical calculations on the feasibility of microalgal biofuels: utilization of marine resources could help realizing the potential of microalgae. Biotechnol. J. 11: 1461-1470. https://doi.org/10.1002/biot.201600041
- Kang Z, Kim BH, Oh HM, Kim HS. 2013. Production of biodiesel and nutrient removal of municipal wastewater using a small scale raceway pond. Microbiol. Biotechnol. Lett. 41: 207-214. https://doi.org/10.4014/kjmb.1301.01001
- Kassim MA, Rashid MA, Halim R. 2017. Towards biorefinery production of microalgal biofuels and bioproducts: Production of acetic acid from the fermentation of Chlorella sp. and Tetraselmis suecica hydrolysates. Green Sust. Chem. 7: 152-171. https://doi.org/10.4236/gsc.2017.72012
- Joe MH, Kim DH, Choi DS, Bai S. 2018. Optimization of phototrophic growth and lipid production of a newly isolated microalga, Desmodesmus sp. KAERI-NJ5. Microbiol. Biotechnol. Lett. 46: 377-389. https://doi.org/10.4014/mbl.1808.08003
- Mahdieh M, Shabani S, Amirjani M. 2019. Characterization of the growth, total lipid and fatty acid profiles in microalga, Nannochloropsis oceanica under different nitrogen sources. Microbiol. Biotechnol. Lett. 46: 11-19. https://doi.org/10.4014/mbl.1801.01004
- Park H, Hoh D, Shin DW, Kim ZH, Hong SJ, Lim SM, et al. 2019. Isolation and characterization of five isolates of Tetraselmis sp. with rapid growth rates in low temperatures. J. Mar. Biosci. Biotechnol. 11: 23-28. https://doi.org/10.15433/KSMB.2019.11.1.023
- Baer S, Heining M, Schwerna P, Buchholz R, Hubner H. 2016. Optimization of spectral light quality for growth and product formation in different microalgae using a continuous photobioreactor. Algal Res. 14: 109-115. https://doi.org/10.1016/j.algal.2016.01.011
- Shin DW, Bae JH, Cho Y, Ryu YJ, Kim ZH, Lim SM, et al. 2016. Isolation of new microalga, Tetraselmis sp. KCTC12236BP, and biodiesel production using its biomass. J. Mar. Biosci. Biotechnol. 8: 39-44. https://doi.org/10.15433/ksmb.2016.8.1.039
- Hong SJ, Park YS, Han MA, Kim ZH, Cho BK, Lee H, et al. 2017. Enhanced production of fatty acids in three strains of microalgae using a combination of nitrogen starvation and chemical inhibitors of carbohydrate synthesis. Biotechnol. Bioprocess Eng. 22: 60-67. https://doi.org/10.1007/s12257-016-0575-9
- Recht L, Zarka A, Boussiba S. 2012. Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. App. Microbiol. Biotechnol. 94: 1495-1503. https://doi.org/10.1007/s00253-012-3940-4
- Kim DK, Hong SJ, Bae JH, Yim N, Jin E, Lee CG. 2011. Transcriptomic analysis of Haematococcus lacustris during astaxanthin accumulation under high irradiance and nutrient starvation. Biotechnol. Bioprocess Eng. 16: 698. https://doi.org/10.1007/s12257-011-0081-z
- Park S, Lee Y, Jin E. 2013. Comparison of the responses of two Dunaliella strains, Dunaliella salina CCAP 19/18 and Dunaliella bardawil to light intensity with special emphasis on carotenogenesis. Algae 28: 203-211. https://doi.org/10.4490/algae.2013.28.2.203
- Lamers PP, Janssen M, De Vos RC, Bino RJ, Wijffels RH. 2012. Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. J. Biotechnol. 162: 21-27. https://doi.org/10.1016/j.jbiotec.2012.04.018
- Li X, Pribyl P, Bisova K, Kawano S, Cepak V, Zachleder V, Cizkova M, et al. 2013. The microalga Parachlorella kessleri--A novel highly efficient lipid producer. Biotechnol. Bioeng. 110: 97-107. https://doi.org/10.1002/bit.24595
-
Heo J, Cho DH, Ramanan R, Oh HM, Kim HS. 2015. PhotoBiobox: A tablet sized, low-cost, high throughput photobioreactor for microalgal screening and culture optimization for growth, lipid content and
$CO_2$ sequestration. Biochem. Eng. J. 103: 193-197. https://doi.org/10.1016/j.bej.2015.07.013 - Lee SH, Ahn CY, Jo BH, Lee SA, Park JY, An KG, et al. 2013. Increased microalgae growth and nutrient removal using balanced N: P ratio in wastewater. J. Microbiol. Biotechnol. 23: 92-98. https://doi.org/10.4014/jmb.1210.10033
- Karapinar Kapdan I, Aslan S. 2008. Application of the Stover-Kincannon kinetic model to nitrogen removal by Chlorella vulgaris in a continuously operated immobilized photobioreactor system. J. Chem. Technol. Biot. 83: 998-1005. https://doi.org/10.1002/jctb.1905
- Mandalam RK, Palsson B. 1998. Elemental balancing of biomass and medium composition enhances growth capacity in high-density Chlorella vulgaris cultures. Biotechnol. Bioeng. 59: 605-611. https://doi.org/10.1002/(SICI)1097-0290(19980905)59:5<605::AID-BIT11>3.0.CO;2-8
- Zhu S, Huang W, Xu J, Wang Z, Xu J, Yuan Z. 2014. Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresour. Technol. 152: 292-298. https://doi.org/10.1016/j.biortech.2013.10.092
- Lee HS, Kim ZH, Park H, Lee CG. 2016. Specific light uptake rates can enhance astaxanthin productivity in Haematococcus lacustris. Bioprocess Biosyst. Eng. 39: 815-823. https://doi.org/10.1007/s00449-016-1561-5
- Sanz-Luque E, Chamizo-Ampudia A, Llamas A, Galvan A, Fernandez E. 2015. Understanding nitrate assimilation and its regulation in microalgae. Front. Plant Sci. 6: 899. https://doi.org/10.3389/fpls.2015.00899
- Chalima A, Oliver L, Fernandez de Castro L, Karnaouri A, Dietrich T, Topakas E. 2017. Utilization of volatile fatty acids from microalgae for the production of high added value compounds. Fermentation 3: 54. https://doi.org/10.3390/fermentation3040054
- Bourre J. 2005. Where to find omega-3 fatty acids and how feeding animals with diet enriched in omega-3 fatty acids to increase nutritional value of derived products for human: what is actually useful. J. Nutr. Health. Aging 9: 232-242.
- Simopoulos AP. 2003. Importance of the ratio of omega-6/omega-3 essential fatty acids: evolutionary aspects. pp. 1-22. Omega-6/omega-3 essential fatty acid ratio: The scientific evidence. Karger Publishers, City.
- Ponnampalam E, Mann N, Sinclair A. 2006. Effect of feeding systems on omega-3 fatty acids, conjugated linoleic acid and trans fatty acids in Australian beef cuts: potential impact on humnan health. Asia Pac. J. Clin. Nutr. 15: 21-29.
- Sayanova O, Mimouni V, Ulmann L, Morant-Manceau A, Pasquet V, Schoefs B, et al. 2017. Modulation of lipid biosynthesis by stress in diatoms. Philos. Trans. R. Soc. B. Biol. Sci. 372: 20160407. https://doi.org/10.1098/rstb.2016.0407
- Pereira SL, Leonard AE, Mukerji P. 2003. Recent advances in the study of fatty acid desaturases from animals and lower eukaryotes. Prostaglandins Leukot. Essent. Fatty Acids 68: 97-106. https://doi.org/10.1016/S0952-3278(02)00259-4
- Sasaki M, Takagi A, Ota S, Kawano S, Sasaki D, Asayama M. 2020. Coproduction of lipids and extracellular polysaccharides from the novel green alga Parachlorella sp. BX1. 5 depending on cultivation conditions. Biotechnol. Rept. 25: e00392. https://doi.org/10.1016/j.btre.2019.e00392
- Taleb A, Legrand J, Takache H, Taha S, Pruvost J. 2018. Investigation of lipid production by nitrogen-starved Parachlorella kessleri under continuous illumination and day/night cycles for biodiesel application. J. Appl. Phycol. 30: 761-772. https://doi.org/10.1007/s10811-017-1286-0