• 제목/요약/키워드: MicroRNA-31

검색결과 19건 처리시간 0.041초

MicroRNA-31 과발현을 이용한 대장암의 예후예측 및 전이예측 바이오마커 발굴 (Overexpression of MicroRNA-31 as a Promising Biomarker for Prognosis and Metastasis in Human Colorectal Cancer)

  • 허근
    • 생명과학회지
    • /
    • 제26권6호
    • /
    • pp.705-710
    • /
    • 2016
  • 대장암은 세계적으로 3번째로 흔한 암종이며, 암으로 인한 사망의 주요 원인이 되고 있다. 비록 다양한 진단방법이나 치료 방법이 이용되고는 있으나 병의 진행에 관여하는 분자메커니즘 이해의 부족 때문에 여전히 완전한 치료는 어려운 실정이다. 마이크로알엔에이는 단백질 정보를 코딩하고 있지 않은 작은 알엔에이 단편이다. 이러한 마이크로알엔에이는 특정 유전자의 전사과정 또는 번역과정을 조절하는 강력한 유전자 조절자로서의 기능을 가진다. 암의 발생과정에서 중요한 세포신호 전달 과정의 손상이 빈번하게 발생 하는데, 다양한 마이크로알엔에이의 이상발현이 그 원인이 되고 있다. 마이크로알엔에이-31은 암유전자의 역할을 하며 발암과정에 관여하는 다양한 유전자를 조절한다고 알려져 있다. 따라서, 본 연구에서는 대장암에서 마이크로알엔에이-31 발현의 임상적의의를 규명하고자 하였다. 175례의 대장암 조직과 16례의 정상 대장조직에서 실시간 유전자 증폭장치를 이용하여 마이크로알엔에이-31의 발현을 분석하고, 임상병리적 요인들과의 상관관계를 분석하고 임상적 유용성을 연구해 보았다. 마이크로알엔에이-31은 정상조직에 비해 대장암 조직에서 과발현이 되어 있었다. 175례 대장암 조직을 이용한 분석에서 마이크로알엔에이-31의 발현은 병기의 진행 정도에 따라 발현이 증가 되고 있었으며, 실제 마이크로알엔에이-31의 발현이 높은 대장암 환자군의 생존률이 그렇지 않은 환자군에 비해 통계적으로 유의하게 나쁜 것으로 확인 되었다. Cox 비례위험 모형과 로지스틱 회귀 모형을 이용한 분석에서 마이크로알엔에이-31의 과발현이 직접적으로 대장암 환자의 예후 및 원발전이와 연관성이 있는 것이 확인 되었다. 따라서, 이상의 연구결과를 종합해볼 때 대장암에서 과발현 된 마이크로알엔에이-31은 대장암 환자의 예후예측 및 전이예측 바이오마커로서의 활용 가능성이 높다고 볼 수 있다.

Interplays between human microbiota and microRNAs in COVID-19 pathogenesis: a literature review

  • Hong, Bok Sil;Kim, Myoung-Ryu
    • 운동영양학회지
    • /
    • 제25권2호
    • /
    • pp.1-7
    • /
    • 2021
  • [Purpose] Recent studies have shown that COVID-19 is often associated with altered gut microbiota composition and reflects disease severity. Furthermore, various reports suggest that the interaction between COVID-19 and host-microbiota homeostasis is mediated through the modulation of microRNAs (miRNAs). Thus, in this review, we aim to summarize the association between human microbiota and miRNAs in COVID-19 pathogenesis. [Methods] We searched for the existing literature using the keywords such "COVID-19 or microbiota," "microbiota or microRNA," and "COVID-19 or probiotics" in PubMed until March 31, 2021. Subsequently, we thoroughly reviewed the articles related to microbiota and miRNAs in COVID-19 to generate a comprehensive picture depicting the association between human microbiota and microRNAs in the pathogenesis of COVID-19. [Results] There exists strong experimental evidence suggesting that the composition and diversity of human microbiota are altered in COVID-19 patients, implicating a bidirectional association between the respiratory and gastrointestinal tracts. In addition, SARS-CoV-2 encoded miRNAs and host cellular microRNAs modulated by human microbiota can interfere with viral replication and regulate host gene expression involved in the initiation and progression of COVID-19. These findings suggest that the manipulation of human microbiota with probiotics may play a significant role against SARS-CoV-2 infection by enhancing the host immune system and lowering the inflammatory status. [Conclusion] The human microbiota-miRNA axis can be used as a therapeutic approach for COVID-19. Hence, further studies are needed to investigate the exact molecular mechanisms underlying the regulation of miRNA expression in human microbiota and how these miRNA profiles mediate viral infection through host-microbe interactions.

microRNA Expression Profile in Patients with Stage II Colorectal Cancer: A Turkish Referral Center Study

  • Tanoglu, Alpaslan;Balta, Ahmet Ziya;Berber, Ufuk;Ozdemir, Yavuz;Emirzeoglu, Levent;Sayilir, Abdurrahim;Sucullu, Ilker
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권5호
    • /
    • pp.1851-1855
    • /
    • 2015
  • Background: There are increasing data about microRNAs (miRNA) in the literature, providing abundant evidence that they play important roles in pathogenesis and development of colorectal cancer. In this study, we aimed to investigate the miRNA expression profiles in surgically resected specimens of patients with recurrent and non-recurrent colorectal cancer. Materials and Methods: The study population included 40 patients with stage II colorectal cancer (20 patients with recurrent tumors, and 20 sex and age matched patients without recurrence), who underwent curative colectomy between 2004 and 2011 without adjuvant therapy. Expression of 16 miRNAs (miRNA-9, 21, 30d, 31, 106a, 127, 133a, 133b, 135b, 143, 145, 155, 182, 200a, 200c, 362) was verified by quantitative real-time polymerase chain reaction (qRT-PCR) in all resected colon cancer tissue samples and in corresponding normal colonic tissues. Data analyses were carried out using SPSS 15 software. Values were statistically significantly changed in 40 cancer tissues when compared to the corresponding 40 normal colonic tissues (p<0.001). MiR-30d, miR-133a, miR-143, miR-145 and miR-362 expression was statistically significantly downregulated in 40 resected colorectal cancer tissue samples (p<0.001). When we compared subgroups, miRNA expression profiles of 20 recurrent cancer tissues were similar to all 40 cancer tissues. However in 20 non-recurrent cancer tissues, miR-133a expression was not significantly downregulated, moreover miR-133b expression was significantly upregulated (p<0.05). Conclusions: Our study revealed dysregulation of expression of ten miRNAs in Turkish colon cancer patients. These miRNAs may be used as potential biomarkers for early detection, screening and surveillance of colorectal cancer, with functional effects on tumor cell behavior.

Overexpression of Long Non-Coding RNA MIR22HG Represses Proliferation and Enhances Apoptosis via miR-629-5p/TET3 Axis in Osteosarcoma Cells

  • Zhao, Haoliang;Zhang, Ming;Yang, Xuejing;Song, Dong
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권10호
    • /
    • pp.1331-1342
    • /
    • 2021
  • In this study, we evaluated the mechanism of long non-coding RNA MIR22 host gene (LncRNA MIR22HG) in osteosarcoma cells. Forty-eight paired osteosarcoma and adjacent tissues samples were collected and the bioinformatic analyses were performed. Target genes and potential binding sites of MIR22HG, microRNA (miR)-629-5p and tet methylcytosine dioxygenase 3 (TET3) were predicted by Starbase and TargetScan V7.2 and confirmed by dual-luciferase reporter assay. Cell Counting Kit-8, colony formation and flow cytometry assays were utilized to determine the viability, proliferation and apoptosis of transfected osteosarcoma cells. Pearson's analysis was introduced for the correlation analysis between MIR22HG and miR-629-5p in osteosarcoma tissue. Relative expressions of MIR22HG, miR-629-5p and TET3 were measured by quantitative real-time polymerase chain reaction or Western blot. MiR-629-5p could competitively bind with and was negatively correlated with MIR22HG, the latter of which was evidenced by the high expression of miR-629-5p and low expression of MIR22HG in osteosarcoma tissues. Overexpressed MIR22HG repressed the viability and proliferation but enhanced apoptosis of osteosarcoma cells, which was reversed by miR-629-5p upregulation. TET3 was the target gene of miR-629-5p, and the promotive effects of upregulated miR-629-5p on the viability and proliferation as well as its repressive effect on apoptosis were abrogated via overexpressed TET3. To sum up, overexpressed MIR22HG inhibits the viability and proliferation of osteosarcoma cells, which was achieved via regulation of the miR-629-5p/TET3 axis.

Screening of MicroRNA in Patients with Esophageal Cancer at Same Tumor Node Metastasis Stage with Different Prognoses

  • Zhao, Bao-Sheng;Liu, Shang-Guo;Wang, Tian-Yun;Ji, Ying-Hua;Qi, Bo;Tao, Yi-Peng;Li, Han-Chen;Wu, Xiang-Nan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.139-143
    • /
    • 2013
  • Patients at the same pathological stage of esophageal cancer (EC) that received the same surgical therapy by the same surgeon may have distinct prognoses. The current study aimed to explore the possibility of differentially-expressed microRNAs (miRNAs) underlying this phenomenon. Samples were collected from EC patients at the same tumor node metastasis (TNM) stage but with different prognoses. Paracancerous normal tissues were taken as controls. The specimens were histopathologically analyzed. Differentially-expressed miRNAs were analyzed using real-time quantitative reverse transcription polymerase chain reaction. Compared with patients with poor prognosis, those with good prognosis exhibited 88 two-fold or more than two-fold increased miRNA fragments and 4 half-decreased miRNAs. The most noticeably up-regulated miRNAs included hsa-miR-31, hsa-miR-196b, hsa-miR-652, hsa-miR-125a-5p, hsa-miR-146b, hsa-miR-200c, hsa-miR-23b, hsa-miR-29a, hsa-miR-186, hsa-miR-205, hsa-miR-376a, hsa-miR-410, hsa-miR-532-3p, and hsa-miR-598, whereas the most significantly-downregulated miRNAs were hsa-let-7e, hsa-miR-130b, and hsa-miR-103. EC patients at same TNM stage but with different prognoses show differentially-expressed miRNAs.

담관결찰 쥐 모델에서 태반유래중간엽줄기세포 이식에 의한 miRNA 표적 인테그린 변화의 간재생 효과 (Alteration of MicroRNAs Targeted Integrins by PD-MSCs Transplantation Is Involved in Hepatic Regeneration in a Rat Model with BDL)

  • 박소혜
    • 생명과학회지
    • /
    • 제31권8호
    • /
    • pp.710-718
    • /
    • 2021
  • 태반유래 중간엽줄기세포(PD-MSCs)는 재생의학에서 세포기반치료제로 잘 알려진 세포군이다. PD-MSCs의 손상된 부위로의 이동과 호밍 기능은 MSC 생착의 중요한 특성이다. miRNA는 최근 MSC의 증식, 생존 이동과 같은 중요한 기능을 조절하는 것으로 알려져 있다. 본 연구의 목적은 담관결찰(BDL) 쥐 모델에서 PD-MSCs 호밍에 관련된 miRNA 및 표적 유전자를 동정하는 것으로, 마이크로어레이 분석을 이용하여 PD-MSCs 호밍에 관여하는 유전자 표적 miRNA를 선별하였다. BDL 쥐모델에 PD-MSCs을 이식한 일주일 후 간 조직에서 PD-MSCs 생착여 부는 면역형광분석법과 qRT-PCR에 의한 인간 Alu유전자 발현으로 확인되었다. 저산소 및 정상조건(Hyp/Nor)에서 이동한 PD-MSC에 비하여, PD-MSCs 이식한 BDL군 간 조직에서 miRNAs 발현의 차이가 크게 나타났으며, PD-MSCs 호밍 관련 miRNA와 표적유전자를 검증하였다. miR199a-5p 및 miR-148a-3p에 대한 표적 유전자 인테그린 α4 (ITGA4)와 α5 (ITGA5)의 발현은 이식(Tx)그룹에서(p<0.05) 유의하게 상향 조절되었다. 또한 인테그린 β1 (ITGB1)과 β8 (ITGB8)의 발현은 miR-183-5p 및 miR-145-5p억제에 의하여 크게 증가되었다. 따라서 이러한 결과는 BDL에 의해 손상된 쥐간에서 PD-MSCs가 호밍효과을 위해 인테그린 그룹과 관련된 miRNA 발현 조절에 관여함을 나타내었다. 본 연구결과는 miRNA에 의한 인테그린 그룹 조절기능이 BDL에 의해 유도된 간섬유증 쥐모델에서 PD-MSCs의 치료효과에 기여할 수 있음을 시사한다.

Association of mir-499 and mir-149 Polymorphisms with Cancer Risk in the Chinese Population: Evidence from Published Studies

  • Zhang, You-Gai;Shi, Jian-Xiang;Song, Chun-Hua;Wang, Peng;Dai, Li-Ping;Zhang, Jian-Ying;Shi, Jia-Chen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권4호
    • /
    • pp.2337-2342
    • /
    • 2013
  • Meta-analyses have shown that microRNA polymorphisms have variable effects in different population. Yet, no meta-analysis investigated the association of two common polymorphisms of miRNA, mir-499 rs3746444 polymorphism and mir-149 rs2292832 polymorphism, with cancer risk in the Chinese population. We searched the PubMed, Web of Knowledge, MEDLINE, CNKI databases, as well as Cochrane library, updated on December 31, 2012 for assays regarding cancer risk association with these two common polymorphisms in the present meta-analysis. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were used to explore the strength of associations. The results showed that rs3746444 polymorphism was associated with increased cancer risk (dominant model: GG/AG vs. AA: OR = 1.43, 95% CI: 1.14-1.80; recessive model: GG vs. AG/AA: OR = 1.54, 95% CI: 1.04-2.30; homozygote model: GG vs. AA: OR = 1.69, 95% CI: 1.10-2.60; heterozygote model: AG vs. AA: OR = 1. 35, 95% CI: 1.09-1.67), and rs3746444 was associated with liver cancer in the subgroup of cancer types. For the rs2292832 polymorphism, the results showed no significant risk association in both overall pooled analysis and subgroup of cancer types, smoking status, gender and tea drinking status in the Chinese population. This meta-analysis suggested that the rs3746444 GG genotype is associated with increased cancer risk, especially liver cancer, while the rs2292832 polymorphism showed no association with cancer risk in Chinese.

Association Between MicroRNA196a2 rs11614913 Genotypes and the Risk of Non-Small Cell Lung Cancer in Korean Population

  • Hong, Young-Seoub;Kang, Ho-Jin;Kwak, Jong-Young;Park, Byung-Lae;You, Chang-Hun;Kim, Yu-Mi;Kim, Heon
    • Journal of Preventive Medicine and Public Health
    • /
    • 제44권3호
    • /
    • pp.125-130
    • /
    • 2011
  • Objectives: The microRNA (miRNA) miR-196a2 may play an important role in lung cancer development and survival by altering binding activity of target mRNA. In this study, we evaluated their associations with the susceptibility of non-small cell lung cancers (NSCLC) by case-control study in a Korean population. Methods: We performed genotyping analyses for miR-196a2 rs11614913 T/C at miRNA regions in a case-control study using blood samples of 406 NSCLC patient and 428 cancer-free control groups. Results: The total C allele frequencies for miR-196a2 were 48.8% for the patients and 45.6% for the controls; and the genotype frequencies of TT, TC, and CC were 23.7%, 55.2%, and 21.1% for the patients and 31.1%, 46.35%, and 22.4% for the controls (p<0.05). Participants who possesses TC/CC genotypes showed high risk for NSCLC compared to those possessed TT genotypes (OR, 1.42; 95% CI, 1.03 to 1.96). The association was persisted in 60 and older age group, male, smokers, those without family history for cancer. However, no significant association of CC genotypes in recessive genetic model was observed. Conclusions: In conclusion, this case-control study provides evidence that miR-196a2 rs11614913 C/T polymorphisms are associated with a significantly increased risk of NSCLC in a dominant model, indicating that common genetic polymorphisms in miR-196a2 rs11614913 are associated with NSCLC. The association of miR196a2 rs11614913 polymorphisms and NSCLC risk require confirmation through additional larger studies.

MicroRNA Analysis in Normal Human Oral Keratinocytes and YD-38 Human Oral Cancer Cells

  • Kim, Hye-Ryun;Park, Eu-Teum;Cho, Kwang-Hee;Kim, Do-Kyung
    • International Journal of Oral Biology
    • /
    • 제36권4호
    • /
    • pp.179-185
    • /
    • 2011
  • MicroRNAs (miRNAs) are small non-coding RNAs that mediate gene expression at the post-transcriptional level by degrading or repressing targeted mRNAs. These molecules are about 21-25 nucleotides in length and exert their effects by binding to partially complementary sites in mRNAs, predominantly in the 3'-untranslated region (3'-UTR). Recent evidence has demonstrated that miRNAs can function as oncogenes or tumor suppressors through the modulation of multiple oncogenic cellular processes in cancer development, including initiation, cell proliferation, apoptosis, invasion and metastasis. In our present study, we examined the expression profile of miRNAs related to oral cancer cell growth inhibition using normal human oral keratinocytes (NHOK) and YD-38 human oral cancer cells. By miRNA microassay analysis, 40 and 31 miRNAs among the 1,769 examined were found to be up- and down-regulated in YD-38 cells compared with NHOK cells, respectively. Using qRT-PCR analysis, the expression levels of miR-30a and miR-1246 were found to be increased in YD-38 cells compared with NHOK cells, whereas miR-203 and miR-125a were observed to be decreased. Importantly, the overexpression of miR-203 and miR-125a significantly inhibited the growth of YD-38 cells. This finding and the microarray data indicate the involvement of specific miRNAs in the development and progression of oral cancer.

New surveillance concepts in food safety in meat producing animals: the advantage of high throughput 'omics' technologies - A review

  • Pfaffl, Michael W.;Riedmaier-Sprenzel, Irmgard
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권7호
    • /
    • pp.1062-1071
    • /
    • 2018
  • The misuse of anabolic hormones or illegal drugs is a ubiquitous problem in animal husbandry and in food safety. The ban on growth promotants in food producing animals in the European Union is well controlled. However, application regimens that are difficult to detect persist, including newly designed anabolic drugs and complex hormone cocktails. Therefore identification of molecular endogenous biomarkers which are based on the physiological response after the illicit treatment has become a focus of detection methods. The analysis of the 'transcriptome' has been shown to have promise to discover the misuse of anabolic drugs, by indirect detection of their pharmacological action in organs or selected tissues. Various studies have measured gene expression changes after illegal drug or hormone application. So-called transcriptomic biomarkers were quantified at the mRNA and/or microRNA level by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) technology or by more modern 'omics' and high throughput technologies including RNA-sequencing (RNA-Seq). With the addition of advanced bioinformatical approaches such as hierarchical clustering analysis or dynamic principal components analysis, a valid 'biomarker signature' can be established to discriminate between treated and untreated individuals. It has been shown in numerous animal and cell culture studies, that identification of treated animals is possible via our transcriptional biomarker approach. The high throughput sequencing approach is also capable of discovering new biomarker candidates and, in combination with quantitative RT-qPCR, validation and confirmation of biomarkers has been possible. These results from animal production and food safety studies demonstrate that analysis of the transcriptome has high potential as a new screening method using transcriptional 'biomarker signatures' based on the physiological response triggered by illegal substances.