Browse > Article
http://dx.doi.org/10.5352/JLS.2021.31.8.710

Alteration of MicroRNAs Targeted Integrins by PD-MSCs Transplantation Is Involved in Hepatic Regeneration in a Rat Model with BDL  

Park, Sohae (Department of Biomedical Science, CHA University)
Publication Information
Journal of Life Science / v.31, no.8, 2021 , pp. 710-718 More about this Journal
Abstract
Placenta-derived mesenchymal stem cells (PD-MSCs) are promising candidates for cell-based therapy in regenerative medicine. The migration and homing potential of PD-MSCs to injured sites is a critical property of MSC engraftment. MicroRNAs (miRNAs) have recently been shown to regulate the critical functions of MSCs, such as proliferation, survival, and migration. The objective of the present study was to identify the miRNA and target genes involved in PD-MSCs homing in a bile duct ligation (BDL) rat model. We selected candidate miRNAs targeting genes for PD-MSCs homing based on microarray analysis. PD-MSC engraftment in BDL-injured rat liver was identified by immunofluorescence assay and human-specific Alu gene expression by quantitative real-time polymerase chain reaction (qRT-PCR) one week after transplantation. Compared with migrated naïve PD-MSCs under hypoxic and normoxic conditions (Hyp/Nor), the transplanted group with PD-MSCs (Tx) showed distinct differences in miRNA expressions in BDL-injured rat liver. We also validated the miRNAs and their target genes for PD-MSCs homing. The expressions of integrin α4 (ITGA4) and integrin α5 (ITGA5) target genes for miR-199a-5p and miR-148a-3p were significantly upregulated in the Tx group (p<0.05). In addition, integrin β1 (ITGB1) and integrin β8 (ITGB8) were upregulated by suppressing miR-183-5p and miR-145-5p, respectively. These results demonstrated that PD-MSCs regulate miRNA expression related to the integrin family for their homing effects on the BDL-injured rat liver. The findings further suggest that miRNA-mediated regulation of the integrin family contributes to the therapeutic efficacy of PD-MSCs in the rat hepatic fibrosis model by BDL.
Keywords
Integrins; liver failure; microRNA; Placenta-derived mesenchymal stem cells (PD-MSCs); stem cell migration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chen, Y., Shao, J. Z., Xiang, L. X., Dong, X. J. and Zhang, G. R. 2008. Mesenchymal stem cells: A promising candidate in regenerative medicine. Int. J. Biochem. Cell Biol. 40, 815-820.   DOI
2 Choi, J. H., Lim, S. M., Yoo, Y. I., Jung, J., Park, J. W. and Kim, G. J. 2016. Microenvironmental interaction between hypoxia and endothelial cells controls the migration ability of placenta-derived mesenchymal stem cells via alpha4 integrin and Rho signaling. J. Cell Biochem. 117, 1145-1157.   DOI
3 Ballini, A., Cantore, S., Scacco, S., Coletti, D. and Tatullo, M. 2018. Mesenchymal stem cells as promoters, enhancers, and playmakers of the translational regenerative medicine. Stem Cells Int. 18, 6927401.
4 Bonauer, A., Carmona, G., Iwasaki, M., Mione, M., Koyanagi, M., Fischer, A., Burchfield, J., Fox, H., Doebele, C. and Ohtani, K. 2009. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324, 1710-1713.   DOI
5 Campagnoli, C., Roberts, I. A. G., Kumar, S., Bennett, P. R., Bellantuono, I. and Fisk, N. M. 2001. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98, 2396-2402.   DOI
6 Cao, Y., Ji, C. and Lu, L. 2020. Mesenchymal stem cell therapy for liver fibrosis/cirrhosis. Ann. Transl. Med. 8, 562.   DOI
7 Dai, B. H., Geng, L., Wang, Y., Sui, C. J., Xie, F., Shen, R. X., Shen, W. F. and Yang, J. M. 2013. microRNA-199a-5p protects hepatocytes from bile acid-induced sustained endoplasmic reticulum stress. Cell Death Dis. 4, e604.   DOI
8 Chen, X., Zhao, Y., Wang, F., Bei, Y., Xiao, J. and Yang, C. 2015. MicroRNAs in liver regeneration. Cell Physiol. Biochem. 37, 615-628.   DOI
9 Clark, E. A., Kalomoiris, S., Nolta, J. A. and Fierro, F. A. 2014. Concise review: MicroRNA function in multipotent mesenchymal stromal cells. Stem Cells 32, 1074-1082.   DOI
10 Collinl, F., Bruno, S., Lindoso, R. S. and Camussi, G. 2014. miRNA expression in mesenchymal stem cells. Curr. Pathobiol. Rep. 2, 101-107.   DOI
11 Chen, W., Harbeck, M. C., Zhang, W. and Jacobson, J. R. 2013. MicroRNA regulation of integrins. Transl. Res. 162, 133-143.   DOI
12 Lee, S. K., Teng, Y., Wong, H. K., Ng, T. K., Huang, L., Lei, P., Choy, K. W., Liu, Y., Zhang, M., Lam, D. S., Yam, G. H. and Pang, C. P. 2011. MicroRNA-145 regulates human corneal epithelial differentiation. PLoS One 6, e21249.   DOI
13 Li, N., Long, B., Han, W., Yuan, S. and Wang, K. 2017. microRNAs: Important regulators of stem cells. Stem Cell Res. Ther. 8, 110.   DOI
14 Li, Z. and Rana, T. M. Therapeutic targeting of microRNAs: Current status and future challenges. Nat. Rev. Drug Discov. 13, 622-638.   DOI
15 Trefts, E., Gannon, M. and Wasserman, D. H. 2017. The liver. Curr. Biol. 27, R1147-R1151.   DOI
16 Lu, M. H., Hu, C. J., Chen, L., Peng, X., Chen, J., Hu, J. Y., Teng, M. and Liang, G. P. 2013. miR-27b represses migration of mouse MSCs to burned margins and prolongs wound repair through silencing SDF-1a. PLoS One 8, e68972.   DOI
17 Pittenger, M. F., Discher, D. E., Peault, B. M., Phinney, D. G., Hare, J. M. and Caplan, A. I. 2019. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen. Med. 4, 22.   DOI
18 Sekiya, Y., Ogawa, T., Yoshizato, K., Ikeda, K. and Kawada, N. 2011. Suppression of hepatic stellate cell activation by microRNA-29b. Biochem. Biophys. Res. Commun. 412, 74-79.   DOI
19 Ullah, M., Liu, D. D. and Thakor, A. S. 2019. Mesenchymal stromal cell Homing: mechanisms and strategies for improvement. iScience 15, 421-438.   DOI
20 Valastyan, S., Reinhardt, F., Benaich, N., Calogrias, D., Szasz, A. M., Wang, Z. C., Brock, J. E., Richardson, A. L. and Weinberg, R. A. 2009. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137, 1032-1046.   DOI
21 Kim, J. Y., Jun, J. H., Park, S. Y., Yang, S. W., Bae, S. H. and Kim, G. J. 2019. Dynamic regulation of miRNA expression by functionally enhanced placental mesenchymal stem cells promotes hepatic regeneration in a rat model with bile duct ligation. Int. J. Mol. Sci. 20, 5299.   DOI
22 Fowler, A., Thomson, D., Giles, K., Maleki, S., Mreich, E., Wheeler, H., Leedman, P., Biggs, M., Cook, R., Little, N., Robinson, B. and McDonald, K. 2011. miR-124a is frequently down-regulated in glioblastoma and is involved in migration and invasion. Eur. J. Cancer 47, 953-963.   DOI
23 Zhang, F., Jing, S., Ren, T. and Lin, J. 2013. MicroRNA-10b promotes the migration of mouse bone marrow-derived mesenchymal stem cells and downregulates the expression of E- cadherin. Mol. Med. Rep. 8, 1084-1088.   DOI
24 Fu, X., Liu, G., Halim, A., Ju, Y., Luo, Q. and Song, A. G. 2019. Mesenchymal stem cell migration and tissue repair. Cells 8, 784.   DOI
25 He, L. and Zhang, H. 2019. MicroRNAs in the migration of mesenchymal stem cells. Stem Cell Rev. Rep. 1, 3-12.
26 Hynes, R. O. 2002. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673-687.   DOI
27 Kawamura, M., Yamamoto, T., Yamashiro, K., Kochi, S., Yoshihara-Hirata, C., Ideguchi, H., Aoyagi, H., Omori, K. and Takashiba, S. 2019. Induction of migration of periodontal ligament cells by selective regulation of integrin subunits. J. Cell Mol. Med. 23, 1211-1223.
28 Kim, G., Eom, Y. W., Baik, S. K., Shin, Y., Lim, Y. L., Kim, M. Y., Kwon, S. O. and Chang, S. J. 2015. Therapeutic effects of mesenchymal stem cells for patients with chronic liver diseases: Systematic review and meta-analysis. J. Kor. Med. Sci. 30, 1405-1415.   DOI
29 Kumar, S. and Ponnazhagan, S. 2007. Bone homing of mesenchymal stem cells by ectopic alpha 4 integrin expression. FASEB J. 21, 3917-3927.   DOI
30 Veevers-Lowe, J., Ball, S. G., Shuttleworth, A. and Kielty, C. M. 2011. Mesenchymal stem cell migration is regulated by fibronectin through α5β1-integrin-mediated activation of PDGFR-β and potentiation of growth factor signals. J. Cell Sci. 124, 1288-1300.   DOI
31 Ye, H., Pang, L., Wu, Q., Zhu, Y., Guo, C., Deng, Y. and Zheng, X. 2015. A critical role of miR-199a in the cell biological behaviors of colorectal cancer. Diagn. Cytopathol. 10, 65.
32 Volarevic, V., Nurkovic, J., Arsenijevic, N., Stojkovic, M. and Volarevic, V. 2014. Concise review: Therapeutic potential of mesenchymal stem cells for the treatment of acute liver failure and cirrhosis. Stem Cells 32, 2818-2823.   DOI
33 Lee, M. J., Jung, J., Na, K. H., Moon, J. S., Lee, H. J., Kim, J. H., Kim, G. I., Kwon, S. W., Hwang, S. G. and Kim, G. J. 2010. Anti-fibrotic effect of chorionic plate-derived mesenchymal stem cells isolated from human placenta in a rat model of CCl(4)-injured liver: potential application to the treatment of hepatic diseases. J. Cell Biochem. 111, 1453-1463.   DOI
34 Wu, T., Qu, L., He, G., Tian, L., Li, L., Zhou, H., Jin, Q., Ren, J., Wang, Y., Wang, J., Kan, X., Liu, M., Shen, J., Guo, M. and Sun, Y. 2016. Regulation of laryngeal squamous cell cancer progression by the lncRNA H19/miR-148a-3p/DNMT1 axis. Oncotarget 7, 11553-11566.   DOI
35 Zhou, W. C., Zhang, Q. B., Qiao, L. and Zhou, W. C. 2014. Pathogenesis of liver cirrhosis. World J. Gastroenterol. 20, 7312-7324.   DOI
36 Wang, Q., Ye, B., Wang, P., Yao, F., Zhang, C. and Yu, G. 2019. Overview of microRNA-199a regulation in cancer. Cancer Manag. Res. 11, 10327-10335.   DOI
37 Valastyan, S. and Weinberg, R. A. 2011. Roles for microRNAs in the regulation of cell adhesion molecules. J. Cell Sci. 124, 999-1006.   DOI
38 De Becker, A. and Riet, I. V. 2016. Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? World J. Stem Cells 8, 73-87.   DOI
39 Tian, L., Chen, M., He, Q., Yan, Q. and Zhai, C. 2020. Micro RNA-199a-5p suppresses cell proliferation, migration and invasion by targeting ITGA3 in colorectal cancer. Mol. Med. Rep. 3, 2307-2317.
40 Kim, M. J., Shin, K. S., Jeon, J. H., Lee, D. R., Shim, S. H., Kim, J. K., Cha, D. H., Yoon, T. K. and Kim, G. J. 2011. Human chorionic-plate-derived mesenchymal stem cells and Wharton's jelly-derived mesenchymal stem cells: a comparative analysis of their potential as placenta-derived stem cells. Cell Tissue Res. 346, 53-64.   DOI