• 제목/요약/키워드: Micro-structure

검색결과 2,337건 처리시간 0.027초

Optimum Manufacturing Processes of Micro-drill (마이크로 드릴의 최적 생산설계)

  • Kim, Gunhoi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제1권1호
    • /
    • pp.109-116
    • /
    • 2002
  • Resently, reduction of industrial products in size and weight has increased by the application of micro-drill for gadgets of high precision and gave rise to a great interest in a micro-drilling. Due to the lack of tool stiffness and the chip packing, micro-drilling requires not only the robust tool structure which has not affected by the vibration, but also the effective drilling methods designed to prevent tool fracture from cutting troubles. Firstly, this paper presents a new manufacturing process of micro-drill for improving the product rate and an optimum shape of micro-drill for lengthening the tool life, and secondly suggests between tool life and drilling torque acquired in the inprocess monitoring system.

  • PDF

Optimum Shape Design of Cemented Carbide Micro-drill in Consideration of Productivity (생산성을 중시한 초경합금 소재 마이크로 드릴의 최적 형상설계)

  • 김건회
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • 제13권3호
    • /
    • pp.133-140
    • /
    • 2004
  • Recently reduction of industrial products in size and weight has been increased by application of micro-drills in gadgets of high precision and a great interest of a micro-drilling has been raised. Due to the lack of tool stiffness and the chip packing, the micro-drilling requires not only the robust tool structure which has not affected by vibration but also effective drilling methods designed to prevent tool fracture from cutting troubles. This paper presents an optimum design shape of a 0.15 mm micro-drill associated with a new manufacturing process to improve the production rate and to lengthen the tool life and suggestions on the micro-drilling characteristic properties associated with the tool life and workpiece quality.

A Study of Micro Machining Using Ultra Precision Machine (초정밀 가공기 제작을 통한 미세가공에 관한 연구)

  • 김석원;김상기;정우섭;이채문;이득우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.97-100
    • /
    • 2004
  • In recent years, a demand for micro-structure machining is increasing by the development of information and optics industries. Micro machining technology is in general well known in the field of lithograghy. However, the requirement of producing micro machine and/or micro mechanism with metal materials will be increased since a variety of workpiece configurations can be easily made. In this paper, ultra precision machine is developed to obtain micro groove and mirror surface using single crystal diamond tool. According to the cutting experiment, no burr was found at the edge of V-grooves, and the surface roughness of copper is about 1~3nm Ra. It is verified that ultra precision machine is effective to high precision machining.

  • PDF

Development of a Novel Micro-stereolithography Technology using UV Lamp and Optical Fiber (UV 램프와 광섬유를 이용한 새로운 개념의 마이크로 광 조형기술의 개발)

  • Choi, Ji-Soon;Lee, Seung-Pyo;Ko, Tae-Jo;Lee, In-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제23권12호
    • /
    • pp.117-121
    • /
    • 2006
  • Generally, micro-stereolithography technology uses laser and complex optical system as light source and light delivery system, respectively. In this research, a novel micro-stereolithography technology that uses UV lamp that is more economical than UV laser as light source and optical fiber that is simpler than previous light delivery system has been developed. Furthermore, precise control system that is composed of 3-axis linear stage and shutter has been used to fabricate truly three dimensional micro-structure. For confirming the feasibility of developed micro-stereolithography apparatus, the solidification experiments were conducted. The solidification widths and depths datum of photopolymer as varying scanning speed of the UV light have been obtained. Using developed apparatus, some micro structures were fabricated successfully.

A Study on the Ultra-Precision Polishing Technique for the Upper Surface of the Micro-Channel Structure (미세채널 구조물 상부의 초정밀 연마 기술 연구)

  • 강정일;이윤호;안병운;윤종학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.313-317
    • /
    • 2003
  • Micro-Channel ultra-precision polishing is a new technology used in magnetic field-assisted relishing. In this paper, an electromagnet or the i18 of test system was designed and manufactured. A size of magnetic abrasive is used on 25~75${\mu}{\textrm}{m}$ and for the polish a micro-channel upper part. A surface of channel which is not even is manufactured using magnetic abrasive finishing at upper surface of micro-channel. As a result, the surface roughness rose by 80% after upper surface of micro- channel was polished up 8 minutes by polishing.

  • PDF

Optimal Design of Micro Machine Tool for Micro Precision Machining (미소가공을 위한 마이크로 공작기계 최적설계)

  • Hwang Joon;Chung Eui-Sik;Liang Steven Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.477-478
    • /
    • 2006
  • This paper presents the results of miniaturized micro milling machine tool development for micro precision machining process. Finite element analysis has been performed to know the relationship between design dimensional variables and structural stiffness in terms of static, dynamic, thermal aspects. Design optimization has been performed to optimize the design variables of micro machine tool to minimize the volume, weight and deformation of machine tool structure and to maximize the stiffness in terms of static, dynamic, and thermal characteristics. This study presents the assessment of the technology incentive for the minimization of machine tool in the quantitative context of static, dynamic stiffness, thermal resistance and thus the accuracy implications.

  • PDF

The Partial Discharge Resistances of Epoxy-Nano-and-Micro Composites

  • Lee, Chang-Hoon;Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권2호
    • /
    • pp.89-91
    • /
    • 2010
  • Partial discharge (PD) resistances were investigated for three types of samples: original epoxy resins, epoxy micro composites with and without the silane processing, and mixture composites with micro and nano particles. The PD was applied to these materials using rod, gap, and plane electrodes. The partial discharge resistance found in the micro composites was better than that found in the original epoxy resin. Moreover, the mixture composites of $SiO_2$ nano and micro particles had much larger resistances than the original epoxy resin or microcomposites. It can be regarded that this excellent property was due to the fact that the nano particles have a dense structure between the micro particles.

Analyzing nonlinear mechanical-thermal buckling of imperfect micro-scale beam made of graded graphene reinforced composites

  • Khalaf, Basima Salman;Fenjan, Raad M.;Faleh, Nadhim M.
    • Advances in materials Research
    • /
    • 제8권3호
    • /
    • pp.219-235
    • /
    • 2019
  • This research is devoted to analyzing mechanical-thermal post-buckling behavior of a micro-size beam reinforced with graphene platelets (GPLs) based on geometric imperfection effects. Graphene platelets have three types of dispersion within the structure including uniform-type, linear-type and nonlinear-type. The micro-size beam is considered to be perfect (ideal) or imperfect. Buckling mode shape of the micro-size beam has been assumed as geometric imperfection. Modified couple stress theory has been used for describing scale-dependent character of the beam having micro dimension. Via an analytical procedure, post-buckling path of the micro-size beam has been derived. It will be demonstrated that nonlinear buckling characteristics of the micro-size beam are dependent on geometric imperfection amplitude, thermal loading, graphene distribution and couple stress effects.

Mechano-Chemical Microfabrication Technology Based on Micro/Nano-Tribology : Development Process and Prospect (마이크로/나노 트라이볼로지 기반 기계-화학적 미세가공기술 : 발전과정 및 전망)

  • 성인하;김대은
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.274-279
    • /
    • 2002
  • In this paper, the development process of an unique and creative micro/nano-structure fabrication technique based on micro/nano-tribology are reviewed and discussed. The so-called Mechano-Chemical Process(MCP), which has been developed since 1995 by Tribology Research Laboratory at Yonsei University with the motivation to overcome the demerits of the conventional photolithographic techniques, is based on the fundamental understanding of the interaction between the tool tip and the workpiece surface. This process is a maskless process which offers tremendous flexibility in surface patterns that can be created on a workpiece surface without using any capital intensive equipment. It Is capable of fabricating the prototypes of micro/nano-components, micro- structured surface with various geometries, micro-molds for making polymer or metal parts, and micro-fluidic channels for lab-on-a- chip

  • PDF

A Study on Micro-step of 2-phase Hybrid Type Linear Stepping Motor (2상 하이브리드형 리니어 스텝핑 전동기의 미세스텝에 관한 연구)

  • Oh, Hong-Seok;Kim, Dong-Hui;Lee, Sang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • 제49권5호
    • /
    • pp.358-363
    • /
    • 2000
  • In this paper, a voltage equations, a thrust force equations and kinetic equation are derived from the basic structure of a 2-phase hybrid type linear stepping motor(HLSM). And a micro-stepping method in order to eliminate effectively the resonant phenomena and to increase the positional resolution of the HLSM was proposed. The proposed micro-stepping method can divide one step into the maximum 128 micro-steps under simple control system. The dynamic characteristics of proposed micro-stepping method were analyzed by the ACSL(Advanced Continuous Simulation Language) with the voltage equations, the thrust force equations and the kinetic equation, and were measured by laser experimental system. As the result, the justice of theory was confirmed, and the resonant phenomena, the positional resolution and dynamic thrust were improved by the proposed micro-stepping method.

  • PDF