• Title/Summary/Keyword: Micro-reactor

Search Result 179, Processing Time 0.025 seconds

Adsorption and Catalytic Characteristics of Acid-Treated Clinoptilolite Zeolite (산처리한 Clinoptilolite Zeolite 의 흡착 및 촉매특성)

  • Chon Hakze;Seo Gon
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.469-478
    • /
    • 1976
  • Clinoptilolite zeolite samples were treated with hydrochloric acid, sulfuric acid and phosphoric acid of different strength and the adsorption characteristics and crystal structures of the original and acid-treated clinoptilolites were studied. By treating with hydrochloric acid, the adsorbed amount increased to 5-fold for nitrogen, to 3-fold for benzene, but for methanol no significant change was observed. As acid strength increased further, there were declines both in adsorption capacity and crystallinity. The results showed that the increase of adsorbed amount was caused by the rearrangement of the pore entrance and cation exchange. A method for determination of clinoptilolite content in natural mineral based on benzene adsorption on acid-treated sample is proposed. By this method, the original sample used in this study was found to contain approximately 40% of clinoptilolite. Using pulse technique in micro-catalytic reactor system, the catalytic activities of hydrochloric acid-treated clinoptilolites in cumene cracking and toluene disproportionation reactions were measured. For cumene cracking reaction, the maximum conversion was observed for the 0.5 N hydrochloric acid-treated sample. It is instructive to note that the maximum benzene adsorption was also observed for the sample treated with 0.5 N HCl. This suggest that the conversion rate was determined mainly by the rate of transport of reactants and the products through the pore structure. In the toluene disproportionation reaction, the same trend was observed. But the rate of deactivation was high for samples with strong acid sites. Since catalyst having higher activity was deactivated more easily, the conversion maximum was shifted to the sample treated with higher concentration of acid, -1N. The catalytic activity of $Ca^{2+} and La^{3+} ion exchanged samples for the toluene disproportion was much lower than that of acid-treated samples. Introduction of Ca^{2+} and La^{3+}$ into the pore structure apparently decreases the effective pore diameter of acid-treated clinoptilolite thus limiting the diffusion of reactants and products.

  • PDF

A Study on Microstructure and Mechanical Properties of Modified 9Cr-1Mo and 9Cr-0.5Mo-2W Steels for nuclear Power Plant (원자력용 개량 9Cr-1Mo 및 9Cr-0.5Mo-2W 강의 미세조직과 기계적 특성 연구)

  • Kim, Seong-Ho;Song, Byeong-Jun;Han, Chang-Seok;Guk, Il-Hyeon;Ryu, U-Seok
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1137-1143
    • /
    • 1999
  • Microstructure and mechanical properties of Mod.9Cr-1Mo and W added 9Cr-0.5Mo2W steels were investigated for liquid metal reactor (LMR) heat exchange tube. The tempering temperatures at which cell structure was formed were $700^{\circ}C$ for Mod.9Cr-1Mo steel and $750^{\circ}C$ for W added 9Cr0.5Mo-2W steel. indicating the recovery of dislocation was delayed by the addition of W. 9Cr-0.5Mo-2W steel had the same kinds of precipitates with Mod.9Cr-1Mo steel, but the W was included in the precipitates in 9Cr-0.5Mo-2W steel. Micro-hardness and ultimate tensile strength of 9Cr-0.5Mo-2W steel were higher than those of Mod.9Cr-1Mo steel. The impact property of Mod.9Cr-1Mo steel was superior to that of 9Cr-0.5Mo-2W steel.

  • PDF

Refractory Textile Wastewater Treatment Using Cell-Immobilized Polyethylene glycol Media (PEG 포괄고정화담체를 이용한 난분해성 염색폐수 처리)

  • Han, Duk-Gyu;Cho, Young-Jin;Bae, Woo-Keun;Hwang, Byung-Ho;Lee, Yong-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.345-350
    • /
    • 2006
  • This study investigated the removal of recalcitrant organics in dyeing wastewater using a fluidized bed reactor(FBR) that contained cell-immobilized pellets. The pellets were manufactured and condensing the gel phase by mixing PEG-polymer and cells to form micro-porous PEG-polymer pellets whose size were ${\Phi}\;4mm{\times}H\;4mm$ on average. An industrial activated sludge without any pre-adaptation was used for the cell immobilization because it gave an equivalent removal efficiency to a pre-adapted sludges. The feed was obtained from an effluent of a biological treatment plant, which contained $SCOD_{Cr}$ of 330 mg/L and $SBOD_5$ of 20 mg/L. The $SCOD_{Cr}$ removal efficiency was over 45% and the effluent $COD_{Mn}$ concentration was less than 100 mg/L at HRTs from 6 to 24 hrs. The optimum HRT in the FBR was determined as 12 hrs considering the removal efficiency and cost. When a raw wastewater containing 768 mg/L of $COD_{Cr}$ was fed to the FBR, the effluent $COD_{Cr}$ concentration increased only slightly, giving a 70% of $COD_{Cr}$ removal or a 97% of $BCOD_5$ removal. This indicated that the FBR had an excellent capability of biodegradable organics removal also. In conclusion, the FBR could be applied to textile wastewater treatment in place of an activated sludge process.

EPMA Analysis of Inter-reaction Layer in Irradiated U3Si-Al Fuels (EPMA를 이용한 U3Si/Al 조사 핵연료의 반응층 분석)

  • Jung, Yang-Hong;Yoo, Byung-Ok;Kim, Hee-Moon;Park, Jong-Man;Kim, Myung-Han
    • Analytical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.355-362
    • /
    • 2004
  • Fission products and Inter reaction layer of $U_3Si-Al$ dispersion fuel, irradiated in HANARO research reactor with 121 kW/m of maximum liner power and 63 at% of average burn-up, was characterization by EPMA (Electron Probe Micro Analyzer). The fuel punching system developed by Irradiated Materials Examination Facility (IMEF) has used to make these samples for the EPMA. With this system a very small and thin specimen which is 1.57 mm in diameter and 2 mm in thickness respectively has been fabricated to protect the EPMA operator from high radioactive fuel and to mini-mize the equivalent dose rate less than 150 mSv/h. EPMA was performed to observe layers of sectional, Inter-reaction and oxide with specimens of cutting and polished. Stoichiometry in the Inter-reaction layer with $16{\mu}m$ of thickness was $U_{2.84}$ Si $Al_{14}$ with calibration of $UO_2$ and $U_{3.24}$ Si $Al_{14.1}$ with calibration of standard specimen. metallic precipitates in this layer were not observed using fission products examination.

Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel (Ni-Cr-Mo계 고강도 저합금강 용접클래드 계면의 미세조직 특성 평가)

  • Kim, Hong-Eun;Lee, Ki-Hyoung;Kim, Min-Chul;Lee, Ho-Jin;Kim, Keong-Ho;Lee, Chang-Hee
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.628-634
    • /
    • 2011
  • SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at $610^{\circ}C$ for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

Investigation of Plugging and Wastage of Narrow Sodium Channels by Sodium and Carbon Dioxide Interaction (소듐과 이산화탄소 반응에 의한 소듐유로막힘 및 재료손상 현상 연구)

  • Park, Sun Hee;Min, Jae Hong;Lee, Tae-Ho;Wi, Myung-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.863-870
    • /
    • 2016
  • We investigated the physical/chemical phenomena that a slow loss of $CO_2$ inventory into sodium after the sodium-$CO_2$ boundary failure in printed circuit heat exchangers (PCHEs), which is considered for the supercritical $CO_2$ Brayton cycle power conversion system of a sodium-cooled fast reactor (SFR). The first phenomenon is plugging inside narrow sodium channels by micro cracks and the other one is damage propagation referred to as wastage combined with the corrosion/erosion effect. Experimental results of plugging shows that sodium flow immediately stopped as $CO_2$ was injected through the nozzle at $300{\sim}400^{\circ}C$ in 3 mmID sodium channels, whereas sodium flow stopped about 60 min after $CO_2$ injection in 5 mmID sodium channels. These results imply that if pressure boundary of sodium-$CO_2$ fails a narrow sodium channel would be plugged by reaction products in a short time whereas a relatively wider sodium channel would be plugged with higher concentration of reaction products. Wastage by the erosion effect of $CO_2$ (200~250 bar) hardly occurred regardless of the kinds of materials (stainless steel 316, Inconel 600, and 9Cr-1Mo steel), temperature ($400{\sim}500^{\circ}C$), or the diameter of the $CO_2$ nozzle (0.2~0.8 mm). Velocities at the $CO_2$ nozzle were specified as Mach 0.4~0.7. Our experimental results are expected to be used for determining the design parameters of PCHEs for their safeties.

An Evaluation of Solid Removal Efficiency in Coagulation System for Treating Combined Sewer Overflows by Return Sludge (CSOs처리를 위한 응집침전시스템에서 슬러지 반송에 의한 고형물 처리효율평가)

  • Ha, Sung-Ryong;Lee, Seung-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.171-178
    • /
    • 2013
  • In this study, the sludge that occurs in the initial operation of coagulation system developed for the treatment of CSOs were returned to the flocculation reactor. The purposes of this study were to analyze the Characteristics of flocs that are generated through the recycling sludge and settling characteristics of sludge, and to evaluate the possibility that high concentrations of particulate matter in the initial inflow of CSOs could be used as an weighted coagulant additive. As a result, the concentration of treated CSOs pollutants at the beginning of the CSOs influent with a large amount of particulate matter over 20 ${\mu}m$ was low, after gradually increasing the concentrations of them. The flocs generated from the sludge return were similar in size compared to flocs generated through injection of micro sands, and settling velocity in case of return sludge injection was decreased from 55.1 cm/min to 21.5 cm/min. SVI value of the sludge accumulated at the bottom of the sedimentation tank was 72, and settled sludge volume decreased rapidly due to the consolidation of sludge to the time it takes to 10 minutes. these mean that sludge used for recycling has good settling characteristic. A condition of returned sludge which is 0.1% return of 0.3% extraction was formed in the balance of settlement and extraction. In this case, This condition was to be adequate to maintain the proper concentration such as 100~200 mg/L of TS and 50~100 mg/L of VS in the flocculation reactor. The usage of the return sludge containing particulate matters of CSOs as an weighted coagulant additive was able to secure a stable treated water quality despite the change of influent water quality dynamically. Furthermore, it can be expected to reduce the alum dosage along with the sludge production.

Partial Oxidation of Methane to $H_2$ Over Pd/Ti-SPK and Pd/Zr-SPK Catalysts and Characterization (Pd/Ti-SPK과 Pd/Zr-SPK 촉매상에서 수소 생산을 위한 메탄의 부분산화반응과 촉매의 특성화)

  • Seo, Ho-Joon;Kang, Ung-Il
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.648-652
    • /
    • 2010
  • Catalytic activities of the partial oxidation of methane (POM) to hydrogen were investigated over Pd(5)/Ti-SPK and Pd(5)/Zr-SPK in a fixed bed flow reactor (FBFR) under atmosphere, and the catalysts were characterized by BET, XPS, XRD. The BET surface areas, pore volume and pore width of Horvath-Kawaze, micro pore area and volume of t-plot of Pd(5)/Ti-SPK and Pd(5)/Zr-SPK were $284m^2/g$, $0.233cm^3/g$, 3.9 nm, $30m^2/g$, $0.015cm^3/g$ and $396m^2/g$, $0.324cm^3/g$, 3.7nm, $119m^2/g$, $0.055cm^3/g$, repectively. The nitrogen adsorption isotherms were type IV with hysteresis. XPS showed that Si 2p and O 1s core electronlevels of Ti-SPK and Zr-SPK substituted Ti and Zr shifted to slightly lower binding energies than SPK. The oxidation states of Pd on the surface of catalysts were $Pd^0$ and $Pd^{+2}$. XRD patterns showed that crystal structures of fresh catalyst changed amorphous into crystal phase after reaction. The conversion and selectivity of POM to hydrogen over Pd(5)/Ti-SPK and Pd(5)/Zr-SPK were 77, 84% and 78, 72%, respectively, at 973 K, $CH_4/O_2$ = 2, GHSV = $8.4{\times}10^4mL/g_{cat}{\cdot}h$ and were kept constant even after 3 days in stream. These results confirm superior activity, thermal stability, and physicochemical properties of catalyst in POM to hydrogen.

Iron Status According to Serum Selenium Concentration and Physique in Young Female Adults (젊은 여성의 혈청 셀레늄 농도 및 체격에 따른 체내 철 수준)

  • Lee, Ok-Hee;Chung, Yong-Sam;Moon, Jong-Wha
    • Journal of Nutrition and Health
    • /
    • v.43 no.2
    • /
    • pp.114-122
    • /
    • 2010
  • Se and Fe are trace minerals acting as antioxidant scavenging free radicals. Iron deficiency is the most frequently reported nutritional deficiency in females. Body iron status are known to be dependent not only upon dietary iron intake, but also upon micro-mineral nutrition and obesity. Antioxidants such as selenium are reported to play an important role on the regulation of erythropoiesis by protecting RBC membrane from antioxidative damage. In this study, iron status in young females and its relationships with selenium status and physique were examined. Serum selenium and iron concentrations were measured by HANARO research reactor using neutron activation analysis method (NAA-method). The proportion with iron deficiency and anemia were 27.1% and 8.6%, respectively in young females, but the proportion with iron deficient anemia was 1.4%. The mean serum selenium level was $12.0\;{\mu}g/dL$ and in normal range in the young women. The study participants were tertiled according to BMI and serum selenium levels. Serum ferritin and iron levels inclined with increasing BMI tertiles. Serum iron and RBC count were higher in middle selenium group than low selenium group. Individuals had significantly lower hematocrit level in the lowest tertile for their serum selenium levels compared with the highest tertile. The serum ferritin level was predicted 25% by BMI and RBC count 26.2% by the serum selenium level and body fat%. In conclusion, this study shows that body iron status in young adult females are influenced by obesity and body selenium status.