• Title/Summary/Keyword: Micro-pressure Wave

Search Result 101, Processing Time 0.024 seconds

Experimental Study on the Slanted Portals for Reducing the Micro-pressure Waves in High-speed Train-tunnel System(I) (고속철도 터널에서 경사갱구 입구의 미기압파 저감성능에 관한 연구(I))

  • Kim, Dong-Hyeon;Shin, Min-Ho;Han, Myeong Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.3-10
    • /
    • 2000
  • The compression wave produced when a high-speed train enters a tunnel propagates along the tunnel ahead of the train. The micro pressure wave related to the compression wave is a special physics phenomena created by high-speed train-tunnel interfaces. A among methods for the purpose of reducing the micro pressure wave is to delay the gradient of the compression wave by using aerodynamic structures. The objective of this paper is to determine the optimum slanted portal using the moving model rig. According to the results, the maximum value of micro pressure wave is reduced by 19.2% for the $45^{\circ}$ slanted portal installed at the entrance of the tunnel and reduced by 41.9% for the $45^{\circ}$ slanted portals at the entrance and exit of the tunnel. Also it is reduced by 34.6% for the $30^{\circ}$ slanted portals installed at the entrance and exit of the tunnel.

  • PDF

Experimental Study on the Slit Cover Hood for Reducing the Micro Pressure Waves in High-Speed Train-Tunnel Interfaces (고속철도에서 슬릿커버 완충공의 터널 미기압파 저감성능)

  • Kim, Dong-Hyeon;Min, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.758-765
    • /
    • 2001
  • Purpose of the present is to investigate the food configuration at a tunnel entrance for reducing the micro pressure wave that is generated according to train speed. Two configurations were examined for tunnel of 0.5 km length. The experimental results show that a slit cover hood installed at the entrance of the tunnel reduces the maximum micro pressure wave by 41.2%, and a configuration with a slit cover hood installed at the entrance and a 45$^{\circ}$slanted portal at the exit of the tunnel suppresses it by 47.7%.

The development of snow shelter connecting serial tunnels for reducing the micro-pressure waves. (연속터널에서 터널출구 미기압파를 저감 할 수 있는 스노우 쉘터 개발)

  • 김동현;강부병;이재환;오일근;김형진
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.390-395
    • /
    • 2000
  • There are many tunnels located apart short distance from each other in mountainous country like Korea. Serial tunnels are connected by snow shelter in many cases. This study presents some countermeasures against micro pressure wave at tile tunnel exit using snow shelter. Through 1/60 scale model laboratory test. we find that snow shelter with 3.6m slit and slit cover show the effect of reducing the micro pressure wave to about 60.5%.

  • PDF

Experimental Study on the Slit Cover Hood for Reducing the Micro Pressure Waves in High-speed Train-tunnel Interfaces (고속철도에서 슬릿커버후드의 터널 미기압파 저감성능에 관한 연구(II))

  • Kim, Dong-Hyeon;Shin, Min-Ho;Han, Myeong Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.3-11
    • /
    • 2000
  • Purpose of this paper is to investigate the hood configuration at a tunnel entrance to reduce the micro pressure wave that is generated according to train speed. Two configurations were examined for the tunnel of 0.5 km in length. The experimental results show that a slit cover hood installed at the entrance of the tunnel reduces the maximum micro pressure wave by 41.2%, and the configuration with a slit cover hood installed at the entrance and the $45^{\circ}$ slanted portal at the exit of the tunnel suppress the pressure wave by 47.7%.

  • PDF

Experimental study on the alleviation of micro-pressure waves radiated from the tunnel exit with the slit hoods on the high-speed train operations of 300km/h (300km/h급 고속철도의 터널 미기압파 저감을 위한 슬릿후드의 실험적 연구)

  • Kim, Dong-Hyeon;Min, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.619-624
    • /
    • 2000
  • The purpose of present study is to investigate for reducing micro pressure waves generated according to train speeds $(240km/h{\sim}380km/h)$ through tunnels with countermeasures as followings; the hood configuration in tunnel entrance. We developed hoods for tunnel of 0.5 km length in the condition of tunnel cross-section area of $107m^2$ on the slab track. According to the results the maximum micro-pressure wave is reduced by 41.2% for the slit hood installed at the entrance of the tunnel and reduced by 47.7% for the slit hood installed at the entrance of the tunnel and the $45^{\circ}$ slanted portal at the exit of the tunnel

  • PDF

Experimental Study of the Shock Wave Dynamics in Micro Shock Tube (Micro Shock Tube에서 발생하는 충격파 실험)

  • Park, Jinouk;Kim, Gyuwan;Kim, Heuydong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.54-59
    • /
    • 2013
  • Micro shock tubes are now-a-days used for a variety engineering applications such as in the field of aerospace, combustion technology and drug delivery systems. But the flow characteristics of micro shock tube will be different from that of well established conventional macro shock tube under the influence of very low Reynolds number and high Knudsen number formed due to smaller diameter. In present study, experimental studies were carried out to a closed end (downstream) Micro Shock Tube with two different diameters were investigated to understand the flow characteristics. Pressure values were measured at different locations inside the driver and driven section. The results obtained show that with the increase in diameter the shock propagation velocity increases as well as the effect of reflected shock wave will be more significant under the same diaphragm rupture pressure.

Development of a new test facility for the study of pressure transients in tunnel and micro-pressure waves radiated from the tunnel exit on the railroad (철도터널내 압력변동 및 터널 미기압파 저감 시험장치개발에 관한 연구)

  • Kim, Dong-Hyeon;Oh, Il-Geun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.611-618
    • /
    • 2000
  • The test facility of the 1/60-scale models for the train-tunnel interactions was recently developed to investigate the effects of entry portal shapes, hood shapes and air-shafts for reducing the micro-pressure waves radiating to the surroundings of the tunnel exits by KRRI in Korea. The launching system of train model was chosen as air-gun type. In present test rig, after train model is launched, the blast wave by the driver did not enter to inside of the tunnel model. The train model is guided on the one-wire system from air-gun driver to the brake parts of test facility end. Some cases of the experiments were compared with numerical simulations to prove the test facility.

  • PDF

Numerical Visualization of the Unsteady Shock Wave Flow Field in Micro Shock Tube

  • Arun, Kumar R.;Kim, Heuy-Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.40-46
    • /
    • 2012
  • Recently micro shock tube is extensively being used in many diverse fields of engineering applications but the detailed flow physics involved in it is hardly known due to high Knudsen number and strong compressibility effects. Unlike the macro shock tube, the surface area to volume ratio for a micro shock tube is very large. This unique effect brings many complexities into the flow physics that makes the micro shock tube different compared with the macro shock tube. In micro shock tube, the inter- molecular forces of working gas can play an important role in specifying the flow characteristics of the unsteady shock wave flow which is essentially generated in all kinds of shock tubes. In the present study, a CFD method was used to predict and visualize the unsteady shock wave flows using the unsteady compressible Navier-Stokes equations, furnished with the no-slip and slip wall boundary conditions. Maxwell's slip equations were used to mathematically model the shock movement at high Knudsen number. The present CFD results show that the propagation speed of the shock wave is directly proportional to the initial pressure and diameter of micro shock tube.

Characteristics Method Analysis of Wind Pressure of Train Running in Tunnel (터널을 주행하는 열차의 풍압에 대한 특성해법 해석)

  • Nam, Seong-Won;Kwon, Hyeok-Bin;Yun, Su-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.436-441
    • /
    • 2012
  • Pressure waves are generated and propagate in tunnel when train enters a tunnel with high speed. Compression wave due to the entry of train head propagates along the tunnel and is reflected at tunnel exit as expansion wave. While expansion wave due to the entry of train tail propagates along the tunnel and is reflected at tunnel exit as compression wave. These pressure waves are repeatedly propagated and reflected at tunnel entrance and exit. Severe pressure change per second causes ear-discomfort for passengers in cabin and micro pressure wave around tunnel exit. It is necessary to analyze the transient pressure phenomena in tunnel qualitatively and quantitatively, because pressure change rate is considered as one of major design parameters for an optimal tunnel cross sectional area and the repeated fatigue force on car body. In this study, we developed the characteristics method analysis based on fixed mesh system and compared with the results of real train test. The results of simulation agreed with that of experiment.

Modeling of Sound-structure Interactions for Designing a Piezoelectric Micro-Cantilever Acoustic Vector Sensor (압전 미세 외팔보 형 수중 음향 벡터센서의 작동 원리와 설계 기법)

  • Yang, Seongkwan;Kim, Junsoo;Moon, Wonkyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.108-116
    • /
    • 2015
  • An acoustic vector sensor is a device that is capable of measuring the direction of wave propagation and the acoustic pressure. In this paper, the modeling of micro-cantilever sensor for the vector sensor are proposed by consideration of acoustic phenomenon in water. Two models based on unimorph structure are proposed in this paper and corresponding transfer function which describes the relation between input pressure wave and output voltage depending on incidence angle and frequency of pressure wave is derived based on lumped model. It has been shown that very thin and flexible micro-cantilever can be used to measure directly the particle velocity component in water.