• 제목/요약/키워드: Micro-positioning control

검색결과 67건 처리시간 0.031초

3자유도 병렬형 마이크로 로봇 설계 (Design of 3 DOF Parallel Micro Robot)

  • 나흥열;이병주;서일홍;김희국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.429-429
    • /
    • 2000
  • Micro positioning mechanism is the key technology in many fields, such as scanning electron microscopy (SEM), x-ray lithography, mask alignment and micro-machining. In the paper, a 3DOF parallel-type micro-positioning mechanism is proposed. This mechanism uses piezo-actuators and Flexure hinge to control x, y and $\theta$ motion. It is shown both analytically and numerically that 2 DOF flexure hinge model was better precision than 1 DOF flexure hinge design.

  • PDF

향상된 스틱-슬립 마찰 모델을 이용한 스마트 구조물의 마이크로 위치제어 (Micro-positioning of a Smart Structure using an Enhanced Stick-slip Model)

  • 이철희;장민규;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.230-236
    • /
    • 2008
  • In this paper, a model-based stick-slip compensation for the micro-positioning is proposed using an enhanced stick-slip model based on statistical rough surface contact model. The smart structure is comprised with PZT (lead (Pb) zirconia (Zr) Titanate (Ti)) based stack actuator incorporating with the PID (Proportional-Integral-Derivative) control algorithm, mechanical displacement amplifier and positioning devices. For the stick-slip compensation, the elastic-plastic static friction model is used considering the elastic-plastic asperity contact in the rough surfaces statistically. Mathematical model of system for the positioning apparatus was derived from the dynamic behaviors of structural parts. PID feedback control algorithms with the developed stick-slip model as well as feedforward friction compensator are formulated for achieving the accurate positioning performance. Experimental results are provided to show the performances of friction control using the developed positioning apparatus.

  • PDF

향상된 스틱-슬립 마찰 모델을 이용한 스마트 구조물의 마이크로 위치제어 (Micro-positioning of a Smart Structure Using an Enhanced Stick-slip Model)

  • 이철희;장민규;최승복
    • 한국소음진동공학회논문집
    • /
    • 제18권11호
    • /
    • pp.1134-1142
    • /
    • 2008
  • In this paper, a model-based stick-slip compensation for the micro-positioning is proposed using an enhanced stick-slip model based on statistical rough surface contact model. The smart structure is comprised with PZT(lead (Pb) zirconia(Zr) Titanate(Ti)) based stack actuator incorporating with the PID(proportional-integral-derivative) control algorithm, mechanical displacement amplifier and positioning devices. For the stick-slip compensation, the elastic-plastic static friction model is used considering the elastic-plastic asperity contact in the rough surfaces statistically. Mathematical model of system for the positioning apparatus was derived from the dynamic behaviors of structural parts. PID feedback control algorithms with the developed stick-slip model as well as feedforward friction compensator are formulated for achieving the accurate positioning performance. Experimental results are provided to show the performances of friction control using the developed positioning apparatus.

평면 X-Y 스테이지의 초정밀 위치결정을 위한 최적 설계 및 제어시스템 개발 (The Development of Optimal Design and Control System for Ultra-Precision Positioning on Single Plane X-Y Stage)

  • 한재호;김재열;심재기;김창현;조영태;김항우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.348-352
    • /
    • 2002
  • a basis such as IT(Information Technology), NT(Nano Technology) and BT(Bio Technology). Recently, NT is applied to various fields that are composed of science, industry, media and semiconductor-micro technology. It has need of IT that is ultra-precision positioning technology with strokes of many hundreds mm and maintenance of nm precision in fields of ultra micro process, ultra precision measurement, photo communication part and photo magnetic memory. This thesis represents optimal design on ultra-precision positioning with single plane X-Y stage and development of artificial control system for adequacy of industrial demand. Also, dynamic simulation on global stage is performed by using ADAMS (Automated Dynamic Analysis of Mechanical System) for the purpose of grasping dynamic characteristic on user designed X-Y global stage. The error between displacements from micro stage and from FEM(Finite Element Method) is 3.53% by verifications of stability on micro stage and control performance. As maximum Von-mises stress on hinge of micro stage is 5.981kg/mm$^2$ that is 1.5% of yield stress, stability on hinge is secured. Preparing previous results, optimal design of micro stage can be possible, and reliance of results with FEM can be secured.

  • PDF

반복학습제어를 이용한 커터 런아웃 보상에 관한 연구 (A Study on the Cutter Runout In-Process Compensation Using Repetitive Loaming Control)

  • 황준;정의식;황덕철
    • 한국정밀공학회지
    • /
    • 제19권3호
    • /
    • pp.137-143
    • /
    • 2002
  • This paper presents the In-process compensation to control cutter runout and improve the machined surface quality. Cutter runout compensation system consists of the micro-positioning servo system with piezoelectric actuator which is embeded in the sliding table to manipulate radial depth of cut in real-time. Cutting force feedback control was proposed in the angle domain based upon repetitive learning control strategy to eliminate chip load variation in end milling process. Micro-positioning control due to adaptive actuation force response improves the machined surface quality by compensation runout effect induced cutting force variation. This result will provide lots of information to build-up the preciswion machining technology.

초정밀 평면 X-Y 스테이지의 시뮬레이션 및 제어성능 평가 (Simulation and Control performance evaluation of Ultra-Precision Single Plane X-Y Stage)

  • 박기형;김재열;곽이구
    • 한국공작기계학회논문집
    • /
    • 제11권5호
    • /
    • pp.65-72
    • /
    • 2002
  • In this study, actuator, sensor, guide, power transmission element and control method are considered for ultra-precision positioning apparatus. Through previous process, single plane X-Y stage with ultra-precision positioning is manufactured. Global stage for the purpose of materialization with robust system, is combined by using AC servo motor and ball screw and rolling guide. And ultra-precision positioning system is developed by micro stage with elastic hinge type and piezo element. global servo and micro servo for the purpose of materialization positioning accuracy with nm(nanometer) are controlled simultaneously by using incremental encoder and laser interferometer as displacement measurement sensor. Through previous process, ultra-precision positioning system(100mm stroke and $\pm$ l0nm positioning accuracy) with single plane X-Y stage are materialized.

미세 변위제어를 위한 공압 액추에이터 개발 (Development of a pneumatic actuator for Micro-Positioning control)

  • 손영선;이동주;이종옥
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.429-434
    • /
    • 2002
  • In order to improve the accuracy in the field of simiconductor and LCD research equipment, the demand of XYZ stage which is possible to control X axis, Y axis and Z axis has been increased steadly in place of the existing XY stage which is only practicable to X & Y axis positioning control. This paper presents a new pneumatic actuator for Micro-positioning control in the XYZ stage. Air pressure in a pneumatic actuator is controlled by the E/P Regulator. The control range of pneumatic actuator is about 100 micro-meters and it's construction concept is easy to apply a practical state

  • PDF

초정밀 평면 X-Y 스테이지의 시뮬레이션 및 제어성능 평가 (Simulation and Control performance evaluation of Ultra-Precision Single Plane X-Y Stage)

  • 곽이구;김재열;한재호;김영석;안재신;노기웅
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.422-428
    • /
    • 2002
  • In this study, actuator, sensor, guide, power transmission element and control method are considered for ultra-precision positioning apparatus. Through previous process, single plane X-Y stage with ultra-precision positioning is manufactured. Global stage for the purpose of materialization with robust system, is combined by using AC servo motor and ball screw and rolling guide. And ultra-precision positioning system is developed by micro stage with elastic hinge type and piezo element. global servo and micro servo for the purpose of materialization positioning accuracy with nm(nanometer) are controlled simultaneously by using incremental encoder and laser interferometer as displacement measurement sensor. Through previous process, ultra-precision positioning system (100mm stroke and ${\pm}$ 10nm positioning accuracy) with single plane X-Y stage are materialized.

  • PDF

반응표면분석법을 이용한 초정밀 마이크로스테이지의 설계 (Design of Ultra-precision Micro Stage using Response Surface Methodology)

  • 예상돈;민병현;이재광
    • 한국기계가공학회지
    • /
    • 제5권1호
    • /
    • pp.39-44
    • /
    • 2006
  • Ultra precision positioning mechanism has been widely used on semiconductor manufacturing equipments, optical spectrum analyzers and cell manipulations. Ultra precision positioning mechanism consists of several actuators, sensors, guides and control systems. Its efficiency depends on each performance of components. The object of this study is to design and analyze the micro stage that is one of the equipments embodied in ultra precision positioning mechanism. The micro stage consists of PZT actuators and flexure hinges. The structural design of flexure hinge is optimized by using RSM and FEM. The control factors concerned with the design of flexure hinges of stage and arms are optimized by minimizing the equivalent stress on the hinge and maximizing 1st natural frequency based on RSM and FEM simulation under various kinds of design conditions.

  • PDF

압전전압 궤환에 의한 미세구동 연삭테이블의 개발 (A Development of Micro-Positioning Grinding Table using Piezoelectric Voltage Feedback)

  • 남수룡;김정두
    • 한국정밀공학회지
    • /
    • 제12권2호
    • /
    • pp.48-58
    • /
    • 1995
  • A micro positioning system using piezoelectric actuators have very wide application region such as ultra-precision machine tool, optical device, measurement systen. In order ro keep a high precision displacement resolution, they use a position sensor and feedback the error. From the practical point of view, a high-resolution displacement sensor system are very expensive and difficult to guarantee such sensitive sensors work properly in the hard opera- tion environment of industry. In this study, a micro-positioning grinding table which does not require position sensor but uses piezoelectric voltage feedback, has been developed. It is driven by hystersis-considering reference input voltage which calculated from computer and then uses actuator/sensor characteristics of piezoelectric materials. From the result of experiments we proved a fast and stable response of micro-positioning system and suggested efficient technique to control the piezoelectric actuator. And through grinding experiments, it is revealed that a characteristics of ground surfaces transient to plastic deformation as extremely small depth of grinding.

  • PDF