• Title/Summary/Keyword: Micro-organisms

Search Result 166, Processing Time 0.023 seconds

Microbial linguistics: perspectives and applications of microbial cell-to-cell communication

  • Mitchell, Robert J.;Lee, Sung-Kuk;Kim, Tae-Sung;Ghim, Cheol-Min
    • BMB Reports
    • /
    • v.44 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Inter-cellular communication via diffusible small molecules is a defining character not only of multicellular forms of life but also of single-celled organisms. A large number of bacterial genes are regulated by the change of chemical milieu mediated by the local population density of its own species or others. The cell density-dependent "autoinducer" molecules regulate the expression of those genes involved in genetic competence, biofilm formation and persistence, virulence, sporulation, bioluminescence, antibiotic production, and many others. Recent innovations in recombinant DNA technology and micro-/nano-fluidics systems render the genetic circuitry responsible for cell-to-cell communication feasible to and malleable via synthetic biological approaches. Here we review the current understanding of the molecular biology of bacterial intercellular communication and the novel experimental protocols and platforms used to investigate this phenomenon. A particular emphasis is given to the genetic regulatory circuits that provide the standard building blocks which constitute the syntax of the biochemical communication network. Thus, this review gives focus to the engineering principles necessary for rewiring bacterial chemo-communication for various applications, ranging from population-level gene expression control to the study of host-pathogen interactions.

Artificial Life Algorithm for Functions Optimization (함수 최적화를 위한 인공생명 알고리듬)

  • Yang, Bo-Seok;Lee, Yun-Hui;Choe, Byeong-Geun;Kim, Dong-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.173-181
    • /
    • 2001
  • This paper presents an artificial life algorithm which is remarkable in the area of engineering for functions optimization. As artificial life organisms have a sensing system, they can find the resource which they want to find and metabolize. And the characteristics of artificial life are emergence and dynamic interaction with environment. In other words, the micro-interaction with each other in the artificial lifes group results in emergent colonization in the whole system. In this paper, therefore, artificial life algorithm by using above characteristics is employed into functions optimization. The optimizing ability and convergent characteristics of this proposed algorithm is verified by using three test functions. The numerical results also show that the proposed algorithm is superior to genetic algorithms and immune algorithms for the multimodal functions.

Inhibition of Bacterial Growth with Silver Wire Iontophoresis (은 이온도입이 세균성장에 미치는 영향)

  • Lee Jae-Hyoung;Kim Joo-Young;Jekal Seung-Joo
    • The Journal of Korean Physical Therapy
    • /
    • v.7 no.1
    • /
    • pp.61-67
    • /
    • 1995
  • The silver cation has broad-spectrum antibiotic activity toward Gram-positive, Gram-negative, fungal. aerobic and anerobic micro-organisms. Silver has been used to care of infected wound. pyogenic arthritis, and chronic osteomyelitis. The purpose of this study was to determine whether pure silver wire iontophoresis using milliamperage direct current has an inhibitory effect on growth in vitro of 3 different species of bacteria-Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Using agarose based media, silver iontophoresis performed at 0, 1, 2, 4, 8 mA for 15 minutes. All experiments were performed in triplicate. Following iontophoresis, inhibition zone width of bacterial growth was measured with calliper. The inhibition of bacterial growth occured at the anodal silver electrode. Inhibition zone width of bacterial growth was significantly increased in all three bacterial species (p<0.05). Between bacterial species, inhibition zone width was not significantly different. Inhibition gone and amperage showed a highly significant positive linear relationship (p<0.001). The result of this study showed that pure silver wire iontophoresis with milliamperage direct current, as well as microamperage direct current, can inhibit bacterial growth in vivo.

  • PDF

Changes in Cellular Viability and Peroxidase Activities of Green Algae Selenastrum capricornutum (Chlorophyceae) to Cadmium (카드뮴에 대한 녹조류 Selenastrum capricornutum (Chlorophyceae)의 세포활력도 및 peroxidase 활성도 변화)

  • Choi Eun-Joo;Lee Sang-Goo;Lee Seung-Jin;Moon Sung-Kyung;Park Yong-Seok;Rhie Ki-tae
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.4
    • /
    • pp.295-303
    • /
    • 2003
  • Physiological cellular activities responses to cadmium (Cd) exposure in green algae with several reductases activities and viability of the cell were examined. The cell division of green algae, Selenastrum capricornutum treated with 5ppm was significantly decreased than that of normal algae. The mean cell number of normal algal culture was as twice much as than that of algae at 6 days after Cd treatment. The cellular viability of algae was analysed by flow-cytometry with fluorescent dye after esterase reaction on cell membrane. The 85.35% of cellular viability of normal culture was decreased to 34.35% when algae was treated with 5 ppm of Cd at 6 days after treatment. It was considered that those method of flow-cytometry is useful tool for toxicity test on micro-organisms in the respect of identifying cellular viability. Also, the activities of both glutathione peroxidase (GPX) and ascorbate peroxidase (APX), which are indirectly react against oxidative stress through reduction of glutathione by Cd were significantly increased with 25%. It is considered that both GPX and APX are involved in the metabolic pathway of Cd -detoxification with similar portion in Selenasturm capricornutum.

Surface erosion behavior of biopolymer-treated river sand

  • Kwon, Yeong-Man;Cho, Gye-Chun;Chung, Moon-Kyung;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.49-58
    • /
    • 2021
  • The resistance of soil to the tractive force of flowing water is one of the essential parameters for the stability of the soil when directly exposed to the movement of water such as in rivers and ocean beds. Biopolymers, which are new to sustainable geotechnical engineering practices, are known to enhance the mechanical properties of soil. This study addresses the surface erosion resistance of river-sand treated with several biopolymers that originated from micro-organisms, plants, and dairy products. We used a state-of-the-art erosion function apparatus with P-wave reflection monitoring. Experimental results have shown that biopolymers significantly improve the erosion resistance of soil surfaces. Specifically, the critical shear stress (i.e., the minimum shear stress needed to detach individual soil grains) of biopolymer-treated soils increased by 2 to 500 times. The erodibility coefficient (i.e., the rate of increase in erodibility as the shear stress increases) decreased following biopolymer treatment from 1 × 10-2 to 1 × 10-6 times compared to that of untreated river-sands. The scour prediction calculated using the SRICOS-EFA program has shown that a height of 14 m of an untreated surface is eroded during the ten years flow of the Nakdong River, while biopolymer treatment reduced this height to less than 2.5 m. The result of this study has demonstrated the possibility of cross-linked biopolymers for river-bed stabilization agents.

Optimal DO Setpoint Decision and Electric Cost Saving in Aerobic Reactor Using Respirometer and Air Blower Control (호흡률 및 송풍기 제어 기반 포기조 최적 DO 농도 설정과 전력 비용 절감 연구)

  • Lee, Kwang Su;Kim, Minhan;Kim, Jongrack;Yoo, Changkyoo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.581-586
    • /
    • 2014
  • Main objects for wastewater treatment operation are to maintain effluent water quality and minimize operation cost. However, the optimal operation is difficult because of the change of influent flow rate and concentrations, the nonlinear dynamics of microbiology growth rate and other environmental factors. Therefore, many wastewater treatment plants are operated for much more redundant oxygen or chemical dosing than the necessary. In this study, the optimal control scheme for dissolved oxygen (DO) is suggested to prevent over-aeration and the reduction of the electric cost in plant operation while maintaining the dissolved oxygen (DO) concentration for the metabolism of microorganisms in oxic reactor. The oxygen uptake rate (OUR) is real-time measured for the identification of influent characterization and the identification of microorganisms' oxygen requirement in oxic reactor. Optimal DO set-point needed for the micro-organism is suggested based on real-time measurement of oxygen uptake of micro-organism and the control of air blower. Therefore, both stable effluent quality and minimization of electric cost are satisfied with a suggested optimal set-point decision system by providing the necessary oxygen supply requirement to the micro-organisms coping with the variations of influent loading.

Supplemental Enzymes, Yeast Culture and Effective Micro-organism Cultureto Enhance the Performance of Rabbits Fed Diets Containing High Levels of Rice Bran

  • Shanmuganathan, T.;Samarasinghe, K.;Wenk, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.5
    • /
    • pp.678-683
    • /
    • 2004
  • An experiment was carried out to study the effects of exogenous enzymes (cellulases and proteases), yeast culture and effective micro-organism (EM) culture on feed digestibility and the performance of rabbits fed rice bran rich diets over a period of ten weeks. Twenty four, 8 to 9 weeks old male and female New Zealand White rabbits were allotted to 4 dietary treatments; a basal (control) feed containing 43% rice bran, basal feed supplemented with either enzymes, yeast culture or EM. Individual feed intake, body weight gain, nutrient digestibility, carcass characteristics and feed cost were studied. Sex of the rabbits had no significant (p<0.05) influence on the parameters studied. The control group showed the lowest daily feed intake (104.8 g), body weight gain (12.8 g) and the highest feed/gain ratio (8.20 g/g). The highest daily feed intake (114.3 g), body weight gain (20.42 g) and the lowest feed/gain ratio (5.60) were observed with enzymes. Compared to the control, yeast significantly (p<0.05) improved the feed intake, body weight gain and feed/gain ratio by 4.9, 34.4 and 22.0%, respectively, while EM improved (p<0.05) them by 4.0, 32.6 and 21.6%, respectively. All the additives improved (p<0.05) the digestibility of dry matter, crude protein, crude fiber and energy by 4.9-8.7, 3.6-10.7, 5.9-8.3 and 4.3-6.4%, respectively. Higher weights of pancreas (by 38.5-56.4%) and caecum (by 13.1-26.8%, compared to the control) were recorded with all additives but liver weight was increased only by yeast (24.5%) and enzymes (26.7%). Significantly (p<0.05) higher carcass recovery percentages were observed with enzymes (60.55), yeast (60.47) and EM (56.60) as compared to the control (48.52). Enzymes, yeast and EM reduced (p<0.05) the feed cost per kg live weight by 23.8, 15.9 and 15.5%, respectively. Results revealed that enzymes, yeast culture and EM can be used to improve the feeding value of agro-industrial by-products for rabbits in Sri Lanka and thereby to reduce the feed cost. Under the present feeding system, enzyme supplement was the best.

Fabrication and validation study of a 3D tumor cell culture system equipped with bloodvessle-mimik micro-channel (혈관모사 마이크로채널이 장착된 3D 종양 세포 배양 시스템의 제작 및 검증 연구)

  • Park, Jeong-Yeon;Koh, Byum-seok;Kim, Ki-Young;Lee, Dong-Mok;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.11-16
    • /
    • 2021
  • Recently, three-dimensional (3D) cell culture systems, which are superior to conventional two-dimensional (2D) vascular systems that mimic the in vivo environment, are being actively studied to reproduce drug responses and cell differentiation in organisms. Conventional two-dimensional cell culture methods (scaffold-based and non-scaffold-based) have a limited cell growth rate because the culture cannot supply the culture medium as consistently as microvessels. To solve this problem, we would like to propose a 3D culture system with an environment similar to living cells by continuously supplying the culture medium to the bottom of the 3D cell support. The 3D culture system is a structure in which microvascular structures are combined under a scaffold (agar, collagen, etc.) where cells can settle and grow. First, we have manufactured molds for the formation of four types of microvessel-mimicking chips: width / height ①100 ㎛ / 100 ㎛, ②100 ㎛ / 50 ㎛, ③ 150 ㎛ / 100 ㎛, and ④ 200 ㎛ / 100 ㎛. By injection molding, four types of microfluidic chips were made with GPPS (general purpose polystyrene), and a 100㎛-thick PDMS (polydimethylsiloxane) film was attached to the top of each microfluidic chip. As a result of observing the flow of the culture medium in the microchannel, it was confirmed that when the aspect ratio (height/width) of the microchannel is 1.5 or more, the fluid flows from the inlet to the outlet without a backflow phenomenon. In addition, the culture efficiency experiments of colorectal cancer cells (SW490) were performed in a 3D culture system in which PDMS films with different pore diameters (1/25/45 ㎛) were combined on a microfluidic chip. As a result, it was found that the cell growth rate increased up to 1.3 times and the cell death rate decreased by 71% as a result of the 3D culture system having a hole membrane with a diameter of 10 ㎛ or more compared to the conventional commercial. Based on the results of this study, it is possible to expand and build various 3D cell culture systems that can maximize cell culture efficiency by cell type by adjusting the shape of the microchannel, the size of the film hole, and the flow rate of the inlet.

Incidence of Microbial Growth from the Tip of the Embryo Transfer Catheter after Embryo Transfer in Relation to Clinical Pregnancy Rate following In-vitro Fertilization and Embryo Transfer (체외수정시술시 배아이식 후 배아이식도관 말단부에서의 미세균주 배양율과 임상적 임신율과의 관계)

  • Lee, Kyoung-Jin;Bai, Sang-Wook;Kim, Jeong-Yeon;Kim, Jin-Young;Lee, Byung-Seok;Park, Ki-Hyun;Cho, Dong-Jae;Song, Chan-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.3
    • /
    • pp.339-344
    • /
    • 1999
  • Objective: To evaluate incidence of microbial growth from the tip of the embryo transfer catheter after embryo transfer in relation to clinical pregnancy rate following in-vitro fertilization and embryo transfer. Method: This study was performed prospectively at the time of transcervical embryo transfer following conventional in-vitro fertilization and intracytoplasmic sperm injection procedures. Sixty three patients were enrolled in this study. Microbiological cultures were performed on endocervical swabs and embryo transfer catheter tips. Results: Positive microbial growths were observed from endocervical swabs in 45 (71.4%) women and from catheter tips in 30 (47.6%) women. There was no statistically significant difference seen in the mean number of oocytes fertilized or number and grade of embryos transferred between the group of patients without growth and the group of patients with positive microbial growth from catheter tips. The clinical pregnancy rate were 30.3% in the group of patients without growth and 13.3% in the group with positive microbial growth from catheter tips. This difference in clinical pregnancy rates was statistically significant. Conclusion: Our finding is that microbial contamination at embryo transfer may influence implantation rates. The major questions arising from our finding are whether eradication of endocervical micro-organisms is possible and whether their eradication will improve implantation rates.

  • PDF

Artificial Induction of Environmental Mammary Stress by Temperature and Micro-organism Causing Mastitis and Modulation of Mammary Growth by Adenosine, IGF-I and Prolatin In Vitro (In Vitro내 유선조직에의 인위적인 온도 및 유방염 발생 미생물에 의한 환경스트레스 유기와 Adenosine, IGF-I 및 Prolactin에 의한 성장조절작용)

  • 정석근;장병배;이창수;박춘근;홍병주;여인서
    • Korean Journal of Animal Reproduction
    • /
    • v.21 no.4
    • /
    • pp.325-333
    • /
    • 1997
  • Recent evidence indicates that growth factors modulate response of mammary epithelial cells to environmental stress. The objective of this study was to examine the cellular and biochemical responses of mammary tissue to environmental stress caused by artificial mastitis. For experimental a, pp.oach, toxins of most mastitis causing organisms(Staph. aureus or Strep. agalactiae) and heat stress(42$^{\circ}C$) were artificially exposed to mammary tissue. Effects of these environmental stresses on cell growth, cell death and heat shock protein synthesis were examined. Lactating mammary tissure were cultured under basal medium(DMEM) su, pp.emented with insulin(10$\mu\textrm{g}$/ml) and aldosterone(1$\mu\textrm{g}$/ml). All treatment groups in heat stress at 42$^{\circ}C$ incubation significantly decreased DNA synthesis rates in comparison with those at 39$^{\circ}C$(P<0.05), however, these decreased DNAa synthesis rates were recovered by addition of adenosine(10$\mu$M) and IGFI(10ng/ml). Similar results were obtained when tissue growth rates were measured by DNA content/tissue. Strep. agalactiae toxin did not significantly decreased DNA content/tissue in comparison with no treatment of bacterial toxin with or without heat stress, however, tended to decrease DNA contents/tissue without heat stress. In the fluorography analysis, heat stress(42$^{\circ}C$ incubation) slightly increased 35S-methoionine labelled 70kd protein synthesis. These results indicate that environmental stress caused by artificial mastitis slightly decreased mammary growth or mammary size, however, these results could be recovered by addition of adenosine and IGF-I.

  • PDF