• 제목/요약/키워드: Micro-metal particle

검색결과 60건 처리시간 0.027초

해양 플랜트 배관용 이종 소재(A105-A312) 및 이종 형상 마찰용접의 용접 특성 분석에 대한 연구 (A Study on Weld Characteristics Analysis of Dissimilar Material (A105-A312) and Shape Friction Welding for Marine Plant Piping)

  • 공유식;김태완;곽재섭;안용식;박영환
    • 한국기계가공학회지
    • /
    • 제19권3호
    • /
    • pp.29-35
    • /
    • 2020
  • This paper studies the main parameters of tube-to-bar dissimilar material and shape friction welding for piping materials. The weldability of joint parts was investigated with respect to tensile tests, micro-Vickers hardness, the bond of area, and optical microstructure. The specimens are tested as-welded. Optimal welding conditions are n = 2000 rpm, HP = 50 MPa, UP = 100 MPa, HT = 5 sec, and UT = 10 sec when the metal loss (Mo) is 11 mm. Moreover, the same two materials for friction welding are strongly mixed with a well-combined structure of micro-particles without any molten material, particle growth, or defects. Therefore, the expected result of dissimilar material friction welding includes a reduction of cost and material in the welding process.

The tensile deformation and fracture behavior of a magnesium alloy nanocomposite reinforced with nickel

  • Srivatsan, T.S.;Manigandan, K.;Godbole, C.;Paramsothy, M.;Gupta, M.
    • Advances in materials Research
    • /
    • 제1권3호
    • /
    • pp.169-182
    • /
    • 2012
  • In this paper the intrinsic influence of micron-sized nickel particle reinforcements on microstructure, micro-hardness tensile properties and tensile fracture behavior of nano-alumina particle reinforced magnesium alloy AZ31 composite is presented and discussed. The unreinforced magnesium alloy (AZ31) and the reinforced nanocomposite counterpart (AZ31/1.5 vol.% $Al_2O_3$/1.5 vol.% Ni] were manufactured by solidification processing followed by hot extrusion. The elastic modulus and yield strength of the nickel particle-reinforced magnesium alloy nano-composite was higher than both the unreinforced magnesium alloy and the unreinforced magnesium alloy nanocomposite (AZ31/1.5 vol.% $Al_2O_3$). The ultimate tensile strength of the nickel particle reinforced composite was noticeably lower than both the unreinforced nano-composite and the monolithic alloy (AZ31). The ductility, quantified by elongation-to-failure, of the reinforced nanocomposite was noticeably higher than both the unreinforced nano-composite and the monolithic alloy. Tensile fracture behavior of this novel material was essentially normal to the far-field stress axis and revealed microscopic features reminiscent of the occurrence of locally ductile failure mechanisms at the fine microscopic level.

PARTICLE SIZE-DEPENDENT PULVERIZATION OF B4C AND GENERATION OF B4C/STS NANOPARTICLES USED FOR NEUTRON ABSORBING COMPOSITES

  • Kim, Jaewoo;Jun, Jiheon;Lee, Min-Ku
    • Nuclear Engineering and Technology
    • /
    • 제46권5호
    • /
    • pp.675-680
    • /
    • 2014
  • Pulverization of two different sized micro-$B_4C$ particles (${\sim}10{\mu}m$ and ${\sim}150{\mu}m$) was investigated using a STS based high energy ball milling system. Shapes, generation of the impurities, and reduction of the particle size dependent on milling time and initial particle size were investigated using various analytic tools including SEM-EDX, XRD, and ICP-MS. Most of impurity was produced during the early stage of milling, and impurity content became independent on the milling time after the saturation. The degree of particle size reduction was also dependent on the initial $B_4C$ size. It was found that the STS nanoparticles produced from milling is strongly bounded with the $B_4C$ particles forming the $B_4C$/STS composite particles that can be used as a neutron absorbing nanocomposite. Based on the morphological evolution of the milled particles, a schematic pulverization model for the $B_4C$ particles was constructed.

절삭유 필터링에 따른 엔드밀 가공면 입자 임베딩 현상에 관한 연구 (A Study on the Particle Embedding Phenomena on Machined Surface according to Cutting Fluid in End Milling)

  • 김전하;홍태용;이종환;강명창;김정석
    • 한국기계가공학회지
    • /
    • 제4권3호
    • /
    • pp.39-44
    • /
    • 2005
  • With the development of high speed and accuracy machining, the micro-chips are formed in the machining process and broken particles are circulated with the cutting fluid. The surface roughness and accuracy of part are deteriorated because the metal particles included in the cutting fluid are embedded on machined surface. In this study, the influences of particles for the machined surface according to filtering degrees are evaluated and the embedding mechanism is suggested.

  • PDF

다양한 커플링제로 표면 개질된 실리카들을 활용한 음이온성 염료 및 중금속의 제거 (Removal of Anionic Dyes and Heavy Metal Ions Using Silica Nanospheres or Porous Silica Micro-particles Modified with Various Coupling Agents)

  • 성소현;이민준;조영상
    • Korean Chemical Engineering Research
    • /
    • 제59권4호
    • /
    • pp.596-610
    • /
    • 2021
  • 스토버 방식에 의한 구형 단분산 입자와 에멀젼 액적을 미세 반응기로 활용하여 합성한 주름진 표면을 갖는 실리카 입자 및 거대 기공을 갖는 다공질 실리카 입자를 커플링제로 표면 개질하여 흡착제로 활용하였다. 아민기를 포함하는 실란 또는 타이타네이트 커플링제를 활용하여 기존의 실리카 재료로는 흡착이 어려웠었던 중금속과 음이온성 염료에 대한 흡착력이 향상된 것을 관찰할 수 있었다. 음이온 염료에 대한 흡착에서는 APTES로 표면 개질한 다공질 실리카가 흡착 효율이 가장 높은 결과를 나타내었고, 중금속 구리에 대한 흡착 결과는 AAPTS로 표면 개질한 다양한 실리카 분말에서 모두 100%에 가까운 흡착 효율을 얻을 수 있었다.

Support Effect of Catalytic Activity on 3-dimensional Au/Metal Oxide Nanocatalysts Synthesized by Arc Plasma Deposition

  • Jung, Chan Ho;Naik, B.;Kim, Sang Hoon;Park, Jeong Y.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.140.2-140.2
    • /
    • 2013
  • Strong metal-support interaction effect is an important issue in determining the catalytic activity for heterogeneous catalysis. In this work, we report the catalytic activity of $Au/TiO_2$, $Au/Al_2O_3$, and $Au/Al_2O_3-CeO_2$ nanocatalysts under CO oxidation fabricated by arc plasma deposition (APD), which is a facile dry process with no organic materials involved. These catalytic materials were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and $N_2$-physisorption. Catalytic activity of the materials has measured by CO oxidation using oxygen, as a model reaction, in a micro-flow reactor at atmospheric pressure. Using APD, the catalyst nanoparticles were well dispersed on metal oxide powder with an average particle size (3~10 nm). As for catalytic reactivity, the result shows $Au/Al_2O_3-CeO_2$ nanocatalyst has the highest catalytic activity among three samples in CO oxidation, and $Au/TiO_2$, and $Au/Al_2O_3$ in sequence. We discuss the effects of structure and metal-oxide interactions of the catalysts on catalytic activity.

  • PDF

USC 화력발전소용 12wt%Cr강의 표면처리에 따른 고체입자침식특성에 관한 연구 (A Study on Solid Particle Erosion Characteristics of Surface Treated 12wt%Cr Steel for USC Power Plant)

  • 엄기원;이선호;이의열
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2004년도 춘계 학술발표대회 개요집
    • /
    • pp.324-326
    • /
    • 2004
  • l2wt%Cr Steel has been applied on turbine bucket and nozzle partition material of power plant. Turbine bucket and nozzle get damaged by solid particle within steam, therefore they are protected by surface treatments such as ion nitriding, boriding and chrome carbide HVOF spray coating. In this study, solid particle erosion(SPE) characteristics after these surface treatments are examined at operating temperature 540$^{\circ}C$ and 590$^{\circ}C$ of fossil power plant and the mechanism of damage was studied. Erosion of 12wt%Cr steel is originated by micro cutting and that of boriding and chrome carbide HVOF spray is originated by these mechanism - repeating collision, crack initiation and propagation. As the results of SPE test at 540$^{\circ}C$ and 30$^{\circ}$ impact angle that is the most commonly occurred in power plant, Boriding had the best SPE -resistance property, Cr$_2$C$_3$-25(Ni20Cr) HVOF spayed and ion nitrided samples were also better than bare metals(l2wt%Cr Steels). At 590$^{\circ}C$ and 30$^{\circ}$ impact angle, Boriding had also the most superior characteristic and HVOF spay sample was better than bare metal.

  • PDF

열처리된 산화막 CMP 슬러리의 노화 현상 (Aging effect of annealed oxide CMP slurry)

  • 이우선;신재욱;최권우;고필주;서용진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.335-338
    • /
    • 2003
  • Chemical mechanical polishing (CMP) process has been widely used to planarize dielectric layers, which can be applied to the integrated circuits for sub-micron technology. Despite the increased use of CMP process, it is difficult to accomplish the global planarization of in the defect-free inter-layer dielectrics (ILD). Especially, defects such as micro-scratch lead to severe circuit failure which affect yield. CMP slurries can contain particles exceeding $1\;{\mu}m$ in size, which could cause micro-scratch on the wafer surface. In this paper, we have studied aging effect the of CMP sin as a function of particle size. We prepared and compared the self-developed silica slurry by adding of abrasives before and after annealing. As our preliminary experiment results, we could be obtained the relatively stable slurry characteristics comparable to original silica slurry in the slurry aging effect.

  • PDF

CMP 실리카 슬러리 입도분석특성 (Aging Effect on CMP slurry)

  • 이우선;고필주;서용진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 제5회 영호남 학술대회 논문집
    • /
    • pp.12-14
    • /
    • 2003
  • As the integrated circuit device shrinks to the smaller dimension, the chemical mechanical polishing (CMP). process was required for the global planarization of inter-metal dielectric (IMD) layer with free-defect. However, as the IMD layer gets thinner, micro-scratches are becoming as major defects. Micro-scratches are generated by agglomerated slurry, solidified and attached slurry in pipe line of slurry supply system. It is well known that the presence of hard and larger size particles in the CMP slurries increases the defect density and surface roughness of the polished wafers. In this paper, we have studied. aging effect the of CMP slurry as a function of particle size. We prepared and compared the self-developed silica slurry by adding of abrasives before and after annealing. As our preliminary experiment results, we could be obtained the relatively stable slurry characteristics comparable to original silica slurry in the slurry aging effect.

  • PDF

용탕단조법에 의하여 제조한 $SiC_p$/Al 복합재료의 2차 성형공정이 기계적 성질에 미치는 영향 (Effects of Secondary Forming Process on Mechanical Properties of $SiC_p$/Al Composites Fabricated by Squeeze Casting)

  • 서영호;강충길
    • 대한기계학회논문집A
    • /
    • 제20권11호
    • /
    • pp.3474-3490
    • /
    • 1996
  • A metal matrix composites(MMCs) for A16061 reinforced with silicon carbide particles is fabricated by melt-stirring method. The primary products of MMCs billets are prepared by volume fractions 5 vol% to 20 vol% and particle size $13\mu m$ to $22\mu m$.This paper will be made to examine the microstructure and mechanical properties of fabricated $SiC_p$/Al 6061 composite by melt-stirring and squeeze casting method. The MMC billets is extruded at $500^{\circ}C$ under the constant extrusion velocity $V_e$=2mm/min using curved shape die. Extrusion force, particle rearrangement, micro structure and mechanical properties of extruded composites will be investigated. The mechanical properties of primary billets manufactured by melt-stirring and squeeze casting method will be compared with extrusion specimen. The effect of volume fraction and size of the reinforcements will be studied. The increase in uniformity of particle dispersion is the major reason for an improvement in reliability due to hot extrusion with optimal shape die. Experimental Young's modulus and 0.2% offset yield strength for the extruded MMCs will be compared with theretical values calculated by the Eshelby method. A method will be proposed for the prediction of Young's modulus and yield strength in $SiC_p$ reinforced MMCs.