• Title/Summary/Keyword: Micro-mechanics

Search Result 374, Processing Time 0.024 seconds

Pixel-level Crack Detection in X-ray Computed Tomography Image of Granite using Deep Learning (딥러닝을 이용한 화강암 X-ray CT 영상에서의 균열 검출에 관한 연구)

  • Hyun, Seokhwan;Lee, Jun Sung;Jeon, Seonghwan;Kim, Yejin;Kim, Kwang Yeom;Yun, Tae Sup
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.184-196
    • /
    • 2019
  • This study aims to extract a 3D image of micro-cracks generated by hydraulic fracturing tests, using the deep learning method and X-ray computed tomography images. The pixel-level cracks are difficult to be detected via conventional image processing methods, such as global thresholding, canny edge detection, and the region growing method. Thus, the convolutional neural network-based encoder-decoder network is adapted to extract and analyze the micro-crack quantitatively. The number of training data can be acquired by dividing, rotating, and flipping images and the optimum combination for the image augmentation method is verified. Application of the optimal image augmentation method shows enhanced performance for not only the validation dataset but also the test dataset. In addition, the influence of the original number of training data to the performance of the deep learning-based neural network is confirmed, and it leads to succeed the pixel-level crack detection.

Hydraulic Characteristics of Deep and Low Permeable Rock Masses in Gyeongju Area by High Precision Constant Pressure Injection Test (고정밀도 정압 주입시험에 의한 경주 지역 대심도 저투수성 암반 수리특성 연구)

  • Bae, SeongHo;Kim, Hagsoo;Kim, Jangsoon;Park, Eui Seob;Jo, Yeonguk;Ji, Taegu;Won, Kyung-Sik
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.243-269
    • /
    • 2021
  • Since the early 2010s, the social importance of research and practical projects targeting deep geological disposal of high-level nuclear waste, underground CO2 storage and characterization of deep subsurface by borehole investigation has been increasing. In this regard, there is also a significant increase in the need for in situ test technology to obtain quantitative and reliable information on the hydraulic characteristics of deep rock mass. Through years of research and development, we have independently set up Deep borehole Hydraulic Test System (DHTS) based on the key apparatuses designed and made with our own technology. Using this system, high precision constant pressure injection tests were successfully completed at the two 1 km boreholes located in Mesozoic granite and sedimentary rock regions, Gyeongju. During the field tests, it was possible to measure very low flow rate below 0.01 l/min with micro flow rate injection/control module. In this paper, the major characteristics of DHTS are introduced and also some results obtained from the high precision field tests under the deep and low permeable rock mass environment are briefly discussed.

In Newton's proof of the inverse square law, geometric limit analysis and Educational discussion (Newton의 역제곱 법칙 증명에서 기하학적 극한 분석 및 교육적 시사점)

  • Kang, Jeong Gi
    • Journal of the Korean School Mathematics Society
    • /
    • v.24 no.2
    • /
    • pp.173-190
    • /
    • 2021
  • This study analyzed the proof of the inverse square law, which is said to be the core of Newton's , in relation to the geometric limit. Newton, conscious of the debate over infinitely small, solved the dynamics problem with the traditional Euclid geometry. Newton reduced mechanics to a problem of geometry by expressing force, time, and the degree of inertia orbital deviation as a geometric line segment. Newton was able to take Euclid's geometry to a new level encompassing dynamics, especially by introducing geometric limits such as parabolic approximation, polygon approximation, and the limit of the ratio of the line segments. Based on this analysis, we proposed to use Newton's geometric limit as a tool to show the usefulness of mathematics, and to use it as a means to break the conventional notion that the area of the curve can only be obtained using the definite integral. In addition, to help the desirable use of geometric limits in school mathematics, we suggested the following efforts are required. It is necessary to emphasize the expansion of equivalence in the micro-world, use some questions that lead to use as heuristics, and help to recognize that the approach of ratio is useful for grasping the equivalence of line segments in the micro-world.

Network Analysis of Technology Convergence on Decentralized Energy by Using Patent Information : Focused on Daegu City Area (특허정보를 활용한 분산형 에너지 기술융합 네트워크 분석 : 대구지역을 중심으로)

  • Han, Jang-Hyup;Na, Jung-Gyu;Kim, Chae-Bogk
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.3
    • /
    • pp.156-169
    • /
    • 2016
  • The objective of this study is to investigate patent trends of Daegu city which tries to introduce environment friendly energy and to develop new technology or new industry sprung from technology convergence on smart decentralized energy technology and other technologies. After applying network analysis to corresponding groups of technology or industry convergence, strategy for future energy convergence industry is provided. Patent data applied in Daegu city area are used to obtain research goal. The technology which contains several IPC codes (IPC Co-occurrence) is considered as a convergence technology. Path finder network analysis is used for visualizing and grouping by using IPC codes. The analysis results categorized 13 groups in energy convergence industry and reclassified them into 3 cluster groups (Smart Energy Product Production Technology Group, Smart Energy Convergence Supply Technology Group, Smart Energy Indirect Application Technology Group) considering the technical characteristics and policy direction. Also, energy industry has evolved rapidly by technological convergence with other industries. Especially, it has been converged with IT industry, and there is a trend that energy industry will be converged with service industry and manufacturing industry such as textile, automobile parts, mechanics, and logistics by employing infrastructure as well as network. Based on the research results on core patent technology, convergence technology and inter-industry analysis, the direction of core technology research and development as well as evolution on decentralized energy industry is identified. By using research design and methodology in this study, the trend of convergence technology is investigated based on objective data (patent data). Above all, we can easily confirm the core technology in the local industry by analyzing the industrial competitiveness in the macro level. Based on this, we can identify convergence industry and technology by performing the technological convergence analysis in the micro level.

Thermo-Mechanical Reliability of Lead-Free Surface Mount Assemblies for Auto-Mobile Application (무연 솔더가 적용된 자동차 전장부품 접합부의 열적.기계적 신뢰성 평가)

  • Ha, Sang-Su;Kim, Jong-Woong;Chae, Jong-Hyuck;Moon, Won-Chul;Hong, Tae-Hwan;Yoo, Choong-Sik;Moon, Jeong-Hoon;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.24 no.6
    • /
    • pp.21-27
    • /
    • 2006
  • This study was focused on the evaluation of the thermo-mechanical board-level reliability of Pb-bearing and Pb-free surface mount assemblies. The composition of Pb-bearing solder was a typical Sn-37Pb and that of Pb-free solder used in this study was a representative Sn-3.0Ag-0.5Cu in mass %. Thermal shock test was chosen for the reliability evaluation of the solder joints. Typical $Cu_6Sn_5$ intermetallic compound (IMC) layer was formed between both solders and Cu lead frame at the as-reflowed state, while a layer of $Cu_3Sn$ was additionally formed between the $Cu_6Sn_5$ and Cu lead frame during the thermal shock testing. Thickness of the IMC layers increased with increasing thermal shock cycles, and this is very similar result with that of isothermal aging study of solder joints. Shear test of the multi layer ceramic capacitor(MLCC) joints was also performed to investigate the degradation of mechanical bonding strength of solder joints during the thermal shock testing. Failure mode of the joints after shear testing revealed that the degradation was mainly due to the excessive growth of the IMC layers during the thermal shock testing.

Underwater Explosive Welding of Stainless Steel and Magnesium Alloy (수중 충격파를 이용한 스테인레스 스틸과 마그네슘합금의 폭발용접에 관한 연구)

  • Lee, Joon-Oh;Kim, Young-Kook;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.221-225
    • /
    • 2012
  • Magnesium is one of the light weight materials, which can improve fuel economy and reduce emissions in automotive industry. Recently, magnesium alloys have gained considerable attention due to good mechanical properties. In this work, we have performed an explosive welding using the magnesium alloys (AZ31) and stainless steel (SUS 304). As a result, SUS304/AZ31 were successfully combined each other; however, a resolidified interlayer was observed at the point of welded layer. To reduce the resolidified interlayer, we have changed the thickness (0.5 mm and 1 mm) of stainless steel, distance (45 mm and 60 mm) between explosive and the center of materials and initial angle ($20^{\circ}$ and $30^{\circ}$) of explosive. In the case of the thickness 0.5 mm and angle of $30^{\circ}$, the resolidfied interlayer was not observed due to the increase of distance from the explosive. To accurately estimate the resolidified interlayer, electron probe micro-analyzer (EPMA) method and hardness were used. For the EPMA analysis, mixed materials were confirmed at the resolidified interlayer, and the measurement exhibited the middle value compared with the AZ31 and SUS304.

Experimental Investigations into the Precision Cutting of High-pressured Jet for Thin Multi-layered Material (다층박판재료의 초고압 젯 정밀가공에 대한 실험적 연구)

  • Park, Kang-Su;Bahk, Yeon-Kyeung;Lee, Jung-Han;Lee, Chae-Moon;Go, Jeung-Sang;Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.44-50
    • /
    • 2009
  • High-pressured jetting is now widely used in the advanced cutting processes of polymers, metals, glass, ceramics and composite materials because of some advantages such as heatless and non-contacting cutting. Similarly to the focused laser beam machining, it is well known as a type of high-density energy processes. High-pressured jetting is going to be developed not only to minimize the cutting line width but also to achieve the short cutting time as soon as possible. However, the interaction behavior between a work piece and high-velocity abrasive particles during the high-pressured jet cutting makes the impact mechanism even more complicated. Conventional high-pressured jetting is still difficult to apply to precision cutting of micro-scaled thin work piece such as thin metal sheets, thin ceramic substrates, thin glass plates and TMM (Thin multi-layered materials). In this paper, we proposed the advanced high-pressured jetting technology by introducing a new abrasives supplying method and investigated the optimal process conditions of the cutting pressure, the cutting velocity and SOD (Standoff distance).

A Numerical Study on the Pressure Relief in a Tunnel Using a Pressure Relief Duct (공기 압력 제어 덕트를 이용한 철도 터널 내 공기 압력 저감에 대한 수치해석 연구)

  • Seo, Sang Yeon;Ha, Heesang;Lee, Sangpil
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.375-383
    • /
    • 2016
  • High-speed trains have been developed widely in many countries in order to transport a large quantity of people and commodities rapidly. When a high speed train enters a tunnel, aerodynamic resistance is generated suddenly. This resistance causes micro pressure wave and discomfort to passengers. Therefore, it is essential to incorporate a pressure relief system in a tunnel and streamlined shape of a train in order to reduce aerodynamic resistance caused by a high-speed train. Additionally, the cross-sectional area of a tunnel should be carefully determined to reduce discomfort of passengers. A pressure relief duct and a vertical shaft are representative measures in a tunnel. This study represents the effect of pressure relief ducts in order to alleviate pressure changes within a time period in a tunnel. One-dimensional network numerical simulations were carried out in order to estimate the effect of pressure relief systems.

Effect of a Pressure Relief System in a High-speed Railway Tunnel (고속 열차 터널의 공기압력 감소를 위한 압력 제어 시스템)

  • Seo, Sang Yeon;Ha, Heesang;Lee, Sang Pil
    • Tunnel and Underground Space
    • /
    • v.28 no.3
    • /
    • pp.247-257
    • /
    • 2018
  • High-speed trains have been developed widely in many countries in order to transport large quantity of people and commodities rapidly. When a high speed train enters a tunnel, aerodynamic resistance is generated suddenly. The resistance caused from air pressure induces micro pressure wave and discomfort to passengers in a train. Therefore, a pressure relief system should be installed in a tunnel to reduce the resistance acting against the running train in a tunnel. Additionally, the shape of a grain should be streamlined in order to reduce aerodynamic resistance caused by a high-speed train. The cross-section of a tunnel also should be carefully designed to reduce discomfort of passengers. This study represents the effect of pressure relief ducts installed between two running tunnels. The pressure relief duct was integrated with a cross-passage in order to save cost and construction time. One-dimensional network numerical simulations were carried out in order to estimate the effect of pressure relief systems.

Nanotribological Properties of Chemically Modified Graphene

  • Kwon, Sangku;Ko, Jae-Hyeon;Byun, Ik-Su;Choi, Jin Sik;Park, Bae Ho;Kim, Yong-Hyun;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.159-159
    • /
    • 2013
  • Atomically thin graphene is the ideal model system for studying nanoscale friction due to its intrinsic two-dimensional anisotropy. Furthermore, modulating its tribological properties could be an important milestone for graphene-based micro and nano-mechanical devices. Here, we report that the tribological properties can be easily altered via simple chemical modifications of the graphene surface. Friction force microscopy measurements show that hydrogenated, fluorinated, and oxidized graphenes exhibit, 2-, 6-, and 7-fold enhanced nanoscale friction on their surfaces, respectively, compared to pristine graphene. The measured nanoscale friction should be associated with the adhesive and elastic properties of the chemically modified graphenes. Density functional theory calculations suggest that, while the adhesive properties of chemically modified graphenes are marginally reduced down to ~30%, the out-of-plane elastic properties are drastically increased up to 800%. Based on these findings, we propose that nanoscale friction on graphene surfaces is characteristically different from that on conventional solid surfaces; stiffer graphene exhibits higher friction, whereas a stiffer three-dimensional solid generally exhibits lower friction. The unusual friction mechanics of graphene is attributed to the intrinsic mechanical anisotropy of graphene, which is inherently stiff in plane, but remarkably flexible out of plane. The out-of-plane flexibility can be modulated up to an order of magnitude by chemical treatmentof the graphene surface. The correlation between the measured nanoscale friction and the calculated out-of-plane flexibility suggests that the frictional energy in graphene is mainly dissipated through the out-of-plane vibrations, or the flexural phonons of graphene.

  • PDF