• Title/Summary/Keyword: Micro-mechanics

Search Result 374, Processing Time 0.023 seconds

Analytical solution for analyzing initial curvature effect on vibrational behavior of PM beams integrated with FGP layers based on trigonometric theories

  • Mousavi, S. Behnam;Amir, Saeed;Jafari, Akbar;Arshid, Ehsan
    • Advances in nano research
    • /
    • v.10 no.3
    • /
    • pp.235-251
    • /
    • 2021
  • In the current study, the free vibrational behavior of a Porous Micro (PM) beam which is integrated with Functionally Graded Piezoelectric (FGP) layers with initial curvature is considered based on the two trigonometric shear deformation theories namely SSDBT and Tan-SDBT. The structure's mechanical properties are varied through its thicknesses following the given functions. The curved microbeam is exposed to electro-mechanical preload and also is rested on a Pasternak type of elastic foundation. Hamilton's principle is used to extract the motion equations and the MCST is used to capture the size effect. Navier's solution method is selected as an analytical method to solve the motion equations for a simply supported ends case and by validating the results for a simpler state with previously published works, effects of different important parameters on the behavior of the structure are considered. It is found that although increasing the porosity reduces the natural frequency, but enhancing the volume fraction of CNTs increasing it. Also, by increasing the central angle of the curved beam the vibrations of the structure increases. Designing and manufacturing more efficient smart structures such as sensors and actuators are of the aims of this study.

Mechanical behavior and chloride resistance of cementitious composites with PE and steel fiber

  • Liao, Qiao;Guo, Zhen-wen;Duan, Xin-zhi;Yu, Jiang-tao;Liu, Ke-ke;Dong, Fang-yuan
    • Advances in concrete construction
    • /
    • v.12 no.6
    • /
    • pp.451-459
    • /
    • 2021
  • The mechanical behaviors and chloride resistance performance of fiber reinforced cementitious composites (FRCC) with hybrid polyethylene (PE) and steel fiber (in total 2% by volume) were investigated. Based on micro-mechanics and fracture mechanics, the reason why the tensile strain capacity of FRCC changed obviously was obtained. Besides, the effects of the total surface area of fiber in FRCC on compressive strength and chloride content were clarified. It is found that the improvement of the tensile strain capacity of FRCC with hybrid fiber is attributed to the growth of strain-hardening performance index (the ratio of complementary energy to crack tip toughness). As the total surface area of fiber related with the interfacial transition zone (ITZ) between fiber and matrix increases, compressive strength decreases obviously. Since the total surface area of fiber is small, the chloride resistance performance of FRCC with hybrid PE and steel fiber is better than that of FRCC containing only PE fiber.

The effect of different earthquake ground motion levels on the performance of steel structures in settlements with different seismic hazards

  • Isik, Ercan;Karasin, ibrahim Baran;Karasin, Abdulhalim
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.85-100
    • /
    • 2022
  • The updated Turkish Building Earthquake Code has been significantly renovated and expanded compared to previous seismic design codes. The use of earthquake ground motion levels with different probabilities of exceedance is one of the major advances in structural mechanics with the current code. This study aims to investigate the earthquake performance of steel structure in settlements with different seismic hazards for various earthquake ground motion levels. It is focused on earthquake and structural parameters for four different ground motion levels with different probabilities of exceedance calculated according to the location of the structure by the updated Turkish Hazard Map. For this purpose, each of the seven different geographical regions of Turkey which has the same seismic zone in the previous earthquake hazard map has been considered. Earthquake parameters, horizontal design elastic spectra obtained and comparisons were made for all different ground motion levels for the seven different locations, respectively. Structural analyzes for a sample steel structure were carried out using pushover analysis by using the obtained design spectra. It has been determined that the different ground motion levels significantly affect the expected target displacements of the structure for performance criteria. It is noted that the different locations of the same earthquake zone in the previous code with the same earthquake-building parameters show significant variations due to the micro zoning properties of the updated seismic design code. In addition, the main innovations of the updated code were discussed.

Enhancing Structural Integrity of Composite Sandwich Beams Using Viscoelastic Bonding with Tapered Epoxy Reinforcement

  • Rajesh Lalsing Shirale;Surekha Anil Bhalchandra
    • Korean Journal of Materials Research
    • /
    • v.34 no.3
    • /
    • pp.125-137
    • /
    • 2024
  • Composite laminates are used in a wide range of applications including defense, automotive, aviation and aerospace, marine, wind energy, and recreational sporting goods. These composite beams still exhibit problems such as buckling, local deformations, and interlaminar delamination. To overcome these drawbacks, a novel viscoelastic autoclave bonding with tapered epoxy reinforcement polyurethane films is proposed. In existing laminates, compression face wrinkling and interlaminar delamination is caused in the sandwich beam. The unique viscoelastic autoclave spunbond interlayer bonding is designed to prevent face wrinkling and absorb and distribute stresses induced by external loads, thereby eliminating interlaminar delamination in the sandwich beam. Also, the existing special reinforcement causes stress concentrations, and the core is not effectively connected, which directly affects the stiffness of the beam. To address this, a novel tapered epoxy polyurethane reinforcement adhesive film is proposed, whose reinforcement thickness gradually tapers as it enters the core material. This minimizes stress concentrations at the interface, preventing excessive adhesive squeeze-out during the bonding process, and improves the stiffness of the beam. Results indicate the proposed model avoids the formation of micro cracks, interlaminar delamination, buckling, and local deformations, and effectively improves the stiffness of the beam.

Introduction to the Thin Film Thermoelectric Cooler Design Theories (박막형 열전 냉각 모듈 제작을 위한 디자인 모델 소개)

  • Jeon, Seong-Jae;Jang, Bongkyun;Song, Jun Yeob;Hyun, Seungmin;Lee, Hoo-Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.881-887
    • /
    • 2014
  • Micro-sized Peltier coolers are generally employed for uniformly distributing heat generated in the multi-chip packages. These coolers are commonly classified into vertical and planar devices, depending on the heat flow direction and the arrangement of thermoelectric materials on the used substrate. Owing to the strong need for evaluation of performance of thermoelectric modules, at present an establishment of proper theoretical model has been highly required. The design theory for micro-sized thermoelectric cooler should be considered with contact resistance. Cooling performance of these modules was significantly affected by their contact resistance such as electrical and thermal junction. In this paper, we introduce the useful and optimal design model of small dimension thermoelectric module.

Deflection Analysis of Laminated Composite Cylindrical Shell Structures Based on Micro-Mechanics (마이크로 역학기반 GFRP 원통형 적층 쉘 구조의 변위 해석)

  • Kim, Gyu-Dong;Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.4
    • /
    • pp.15-21
    • /
    • 2013
  • This study carried out finite element deflection analysis of cylindrical shell structures made of composite materials, which is based on the micro-mechanical approach for different fiber-volume fractions. The finite element (FE) models for composite structures using multi-scale approaches described in this paper is attractive not only because it shows excellent accuracy in analysis but also it shows the effect of the material combination. New results reported in this paper are focused on the significant effects of the fiber-volume fraction for various parameters, such as fiber angles, layup sequences, and length-thickness ratios. It may be concluded from this study that the combination effect of fiber and matrix, largely governing the dynamic characteristics of composite shell structures, should not be neglected and thus the optimal combination could be used to design such civil structures for better dynamic performance.

Rheological properties of self consolidating concrete with various mineral admixtures

  • Bauchkar, Sunil D.;Chore, H.S.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.1
    • /
    • pp.1-13
    • /
    • 2014
  • This paper reports an experimental study into the rheological behaviour of self consolidating concrete (SCC). The investigation aimed at quantifying the impact of the varying amounts of mineral admixtures on the rheology of SCC containing natural sand. Apart from the ordinary Portland cement (OPC), the cementitious materials such as fly ash (FA), ground granulated blast furnace slag (GGBS) and micro-silica (MS) in conjunction with the mineral admixtures were used in different percentages keeping the mix paste volume and flow of concrete constant at higher atmospheric tempterature ($30^{\circ}$ to $40^{\circ}C$). The rheological properties of SCC were investigated using an ICAR rheometer with a four-blade vane. The rheological properties of self-consolidating concrete (SCC) containing different mineral admixtures (MA) were investigated using an ICAR rheometer. The mineral admixtures were fly ash (FA), ground granulated blast furnace slag (GGBS), and micro silica (MS). The results obtained using traditional workability results are compared with those obtained using ICAR rheometer. The instrument ICAR (International Center for Aggregate Research) rheometer employed in the present study for evaluating the rhelogical behaviour of the SCC is found to detect systematic changes in workability, cementitious materials, successfully. It can be concluded that the rheology and the slump flow tests can be concurrently used for predicting the flow behaviours of SCC made with different cementitious materials.

Micro-power Properties of 31Type Triple-morph Cantilever for Energy Harvesting Device (31 타입 트리모프 켄틸레버의 마이크로 발전 특성 연구)

  • Kim, In-Sung;Joo, Hyeon-Kyu;Jung, Soon-Jong;Kim, Min-Soo;Song, Jae-Sung;Jeon, So-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.220-221
    • /
    • 2008
  • With recent advanced in portable electric devices, wireless sensor, MEMS and bio-Mechanics device, the new typed power supply, not conventional battery but self-powered energy source is needed. Particularly, the system that harvests from their environments are interests for use in self powered devices. For very low powered devices, environmental energy may be enough to use power source. Therefore, in other to made piezoelectric energy harvesting device. The made 31 type triple-morph cantilever was resulted from the conditions of 100k$\Omega$, 0.25g, 154Hz respectively. The thick film was prepared at the condition of $6.57V_{rms}$, and its power was $432.31{\mu}W$ and its thickness was $50{\mu}m$.

  • PDF

A New Method for Measuring Residual Stress in Micro and Nano Films (마이크로 및 나노 박막의 잔류응력을 측정하기위한 새로운 방법)

  • Kang, Ki-Ju;Evans, Anthony G.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.438-444
    • /
    • 2003
  • A new method to measure residual stress in micron and nano scale films is described. In the theory it is based on Linear Elastic Fracture Mechanics. And in the techniques it depends on the combined capability of the focused ion beam (FIB) imaging system and of high-resolution digital image correlation (DIC) software. The method can be used for any film material (whether amorphous or crystalline) without thinning the substrate. In the method, a region of the film surface is highlighted and scanning electron images of that region taken before and after a long slot, depth a, is introduced using the FIB. The DIC software evaluates the displacement of the surface normal to the slot due to the stress relaxation by using features on the film surface. To minimize the influence of signal noise and rigid body movement, not a few, but all of the measure displacements are used for determining the real residual stress. The accuracy of the method has been assessed by performing measurements on a nano film of diamond like carbon (DLC) on glass substrate and on micro film of aluminum oxide thermally grown on Fecrally substrate. It is shown that the new method determines the residual stress ${\sigma}_R=-1.73$ GPa for DLC and ${\sigma}_R=-5.45$ GPa for the aluminum oxide, which agree quite well with ones measured independently.

  • PDF

Initiation and Propagation Behaviors of Micro-Surface-Fatigue Cracks under In-Plane Tension Fatigue Tests (引張 軸荷重 疲勞 에 의한 微小表面 균열 의 發생 . 成長擧動)

  • 서창민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 1985
  • In-plane tension fatigue tests (R = 0.05) were carried out to investigate the initiation and propagation behaviors of micro-surface-fatigue cracks on smooth surfaces of a mild steel. Also, the investigations of saturated cyclic strain which can be obtained by the fatigue tests have been made via the cyclic strain intensity factor, .DELTA. $K_{\epsilon}$/, for the purpose of unifying two approaches of the study of fatigue; the one approach is based on the fracture mechanics concept and the other on lowcycle fatigue concept. Some of the results are as follows; The growth rate, d(2a)/dN, of small cracks cannot be represented by one straight line as a function of .DELTA.K for various of the nominal stress range, .DELTA..sigma., and is higher than that of a larger through crack. The rearrangement of the d(2a)/dN by .DELTA..epsilon..root..pi.s( = .DELTA. $K_{\epsilon}$/) with the stress range .DELTA..epsilon. in .DELTA.K replaced by .DELTA..epsilon., strain range, gives one straight line of the .DELTA. $K_{\epsilon}$-d(2a)/dN relation for various values of stress range .DELTA.$_{\epsilon}$../.X>../.