• Title/Summary/Keyword: Micro-mechanical characteristics

Search Result 830, Processing Time 0.025 seconds

Effect of Alloying Elements (Cu, Al, Si) on the Electrochemical Corrosion Behaviors of TWIP Steel in a 3.5 % NaCl Solution (3.5% NaCl 수용액 내 TWIP강의 부식거동에 미치는 합금원소 (Cu, Al, Si)의 영향)

  • Kim, Si-On;Hwang, Joong-Ki;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.300-311
    • /
    • 2019
  • The corrosion behaviors of twinning-induced plasticity (TWIP) steels with different alloying elements (Cu, Al, Si) in a neutral aqueous environment were investigated in terms of the characteristics of the corrosion products formed on the steel surface. The corrosion behavior was evaluated by measuring potentiodynamic polarization test and electrochemical impedance spectroscopy. For compositional analysis of the corrosion products formed on the steel surface, an electron probe x-ray micro analyzer was also utilized. This study showed that the addition of Cu to the steel contributed to the increase in corrosion resistance to a certain extent by the presence of metallic Cu in discontinuous form at the oxide/steel interface. Compared to the case of steel with Cu, the Al-bearing specimen exhibited much higher polarization resistance and lower corrosion current by the formation of a thin Al-enriched oxide layer. On the other hand, Si addition (3.0 wt%) to the steel led to an increase in grain size, which was twice as large as that of the other specimens, resulting in a deterioration of the corrosion resistance. This was closely associated with the localized corrosion attacks along the grain boundaries by the formation of a galvanic couple with a large cathode-small anode.

Production of Fe Amorphous Powders by Gas-Atomization Process and Subsequent Spark Plasma Sintering of Fe amorphous-ductile Cu Composite Powder Produced by Ball-milling Process (II) - II. SPS Behaviors of Composite Powders and their Characteristics - (가스분무법에 의한 Fe계 비정질 분말의 제조와 볼밀링공정에 의한 연질 Cu분말과의 복합화 및 SPS 거동 (II) - II. 복합분말의 SPS와 특성 -)

  • Kim, Jin-Chun;Kim, Ji-Soon;Kim, H.J.;Kim, Jeong-Gon
    • Journal of Powder Materials
    • /
    • v.16 no.5
    • /
    • pp.326-335
    • /
    • 2009
  • Fe based (Fe$_{68.2}$C$_{5.9}$Si$_{3.5}$B$_{6.7}$P$_{9.6}$Cr$_{2.1}$Mo$_{2.0}$Al$_{2.0}$) amorphous powder, which is a composition of iron blast cast slag, were produced by a gas atomization process, and sequently mixed with ductile Cu powder by a mechanical ball milling process. The Fe-based amorphous powders and the Fe-Cu composite powders were compacted by a spark plasma sintering (SPS) process. Densification of the Fe amorphous-Cu composited powders by spark plasma sintering of was occurred through a plastic deformation of the each amorphous powder and Cu phase. The SPS samples milled by AGO-2 under 500 rpm had the best homogeneity of Cu phase and showed the smallest Cu pool size. Micro-Vickers hardness of the as-SPSed specimens was changed with the milling processes.

The Characteristics of Ultrasonic Signals for Detecting Micro-Defects in Ti-6Al-4V Alloy (Ti-6Al-4V 합금의 내부 미소결함에 따른 초음파 신호 특성 연구)

  • Choi, Sang-Woo;Lee, Joon-Hyun;Kubota, M.;Murakami, Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.6
    • /
    • pp.591-597
    • /
    • 2001
  • Ti alloy is used for essential parts of aircraft for high temperature environment. Although Ti alloy has excellent performance in regard to mechanical properties, it is difficult ot find fatigue cracks by nondestructive ultrasonic inspection due to its two-phase microstructure, which consists of hard alpha and beta phases. Sound energy reflected from microstructural features in the component produces a background inspection noise which is seen even when no defects are present. This noise can inhibit the detection of critical internal defects such as pores cracks or inclusions. To obtain fundamental data on ultrasonic inspection of Ti alloy, ultrasonic testing was performed using a specimen with small drill holes and ultrasonic wave propagation velocites were measured.

  • PDF

Experimental Study to Examine Wear Characteristics and Determine the Wear Coefficient of Ductile Cast Iron (DCI) Roll (Ductile Cast Iron (DCI) 롤의 마모 특성 고찰 및 마모계수 도출을 위한 실험적 연구)

  • Byon, Sang-Min
    • Tribology and Lubricants
    • /
    • v.33 no.3
    • /
    • pp.98-105
    • /
    • 2017
  • A pin-on-disk test is performed to measure the wear volume of a ductile cast iron (DCI) roll when it wears down using a high carbon steel and two alloy steels at different sliding velocities between the roll and the material (steel). Normal pressure is set as constant and test temperatures are 400, 500 and $600^{\circ}C$. In addition, thermal softening behavior of the DCI roll is examined using a high-temperature micro-hardness tester and the surface hardness variation of the DCI roll is expressed in terms of temperature and heating time. Based on experimental data, a wear coefficient used in Archard's wear model for each material is obtained. The wear volume is clearly observed when the test temperature is $400^{\circ}C$ and sliding velocity varies. However, it is not measured at temperatures of $500^{\circ}C$ and $600^{\circ}C$ even with variations in sliding velocity. From the optical photographs of the pin and disk, the abrasive wear is observed at $400^{\circ}C$ clearly, but no at $500^{\circ}C$ and $600^{\circ}C$. At higher temperatures, the pin surface is not smooth and has many tiny caves distributed on it. It is found that wear volume is dependent on the carbon contents rather than alloy contents. Results also reveal that the variations of wear coefficients are almost linearly proportional to the carbon contents of the material.

Hydrophobic Characteristics of a Silicone Resin Surface Produced by Replicating an Electric Discharge Machined Surface (방전가공면을 복제한 실리콘수지 표면의 발수특성연구)

  • Kim, Y.H.;Hong, S.K.;Lee, S.Y.;Lee, S.H.;Kim, K.H.;Kang, J.J.
    • Transactions of Materials Processing
    • /
    • v.22 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • In this study, a micro/nano-random-pattern-structure surface was machined by electric discharge machining (EDM) followed by replicating the EDM surface with a silicone elastomer having low energy and greater hydrophobicity. The variation of hydrophobicity was of prime interest and was examined as a function of the surface roughness of the replicated silicone elastomer. The hydrophobicity was evaluated by the water contact angle (WCA) measured on the relevant surface. For the experiments, the original surfaces were machined by die sinking electric discharge machining (DS-EDM) and wire cutting electric discharge machining (WC-EDM). The ranges of surface roughness were Ra $0.8{\sim}19{\mu}m$ for the DS-EDM and Ra $0.5{\sim}4.7{\mu}m$ for the WC-EDM. In order to fabricate a hydrophobic surface, the EDM surfaces were directly replicated using a liquid-state silicone elastomer, which was thermally cured. The measured WCA on the replicated surfaces for DS-EDM was in the range of $115{\sim}130^{\circ}$ and for WC-EDM the WCA was in the range of $123{\sim}150^{\circ}$. Additionally, the dynamic hydrophobicity was evaluated by measuring an advancing and a receding WCA on the replicated silicone elastomer surfaces.

Network Time Protocol Extension for Wireless Sensor Networks (무선 센서 네트워크를 위한 인터넷 시각 동기 프로토콜 확장)

  • Hwang, So-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2563-2567
    • /
    • 2011
  • Advances in smart sensors, embedded systems, low-power design, ad-hoc networks and MEMS have allowed the development of low-cost small sensor nodes with computation and wireless communication capabilities that can form distributed wireless sensor networks. Time information and time synchronization are fundamental building blocks in wireless sensor networks since many sensor network applications need time information for object tracking, consistent state updates, duplicate detection and temporal order delivery. Various time synchronization protocols have been proposed for sensor networks because of the characteristics of sensor networks which have limited computing power and resources. However, none of these protocols have been designed with time representation scheme in mind. Global time format such as UTC TOD (Universal Time Coordinated, Time Of Day) is very useful in sensor network applications. In this paper we propose network time protocol extension for global time presentation in wireless sensor networks.

A Study on Estimation of Infinite Fatigue Life in Cruciform Fillet Welded Joint (십자형 필릿 용접부에서의 무한 피로수명 평가에 관한 연구)

  • Lee, Yong-Bok
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.19-25
    • /
    • 2013
  • The joining methods of steel structures of gas facilities, bridges, ships etc. by welding are composed mostly of T-type or cruciform fillet welding and full penetration or partial penetration according to the uses and the shape of the structures. In this study, it was examined the characteristics of fatigue crack according to penetration depth in relation to material thickness in the cruciform fillet welded joints. From the results, it was investigated the safe design stresses within the range of infinite life. When the LOP length is long the range of infinite life is small with root failure and when the LOP length is short the range of infinite life is large with teo failure. For the specimen of material thickness, 20mm welded by 3 pass compared with 10mm, 15mm welded by 2 pass, the fatigue strength and the range of infinite life was more improved by increasing of notch toughness from formation of micro-ferrite acicular structure.

A Study on the Early Fire Detection by Using Multi-Gas Sensor (다중가스센서를 이용한 화재의 조기검출에 대한 연구)

  • Cho, Si Hyung;Jang, Hyang Won;Jeon, Jin Wook;Choi, Seok Im;Kim, Sun Gyu;Jiang, Zhongwei;Choi, Samjin;Park, Chan Won
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.342-348
    • /
    • 2014
  • This paper introduced a novel multi-gas sensor detector with simple signal processing algorithm. This device was evaluated by investigating the characteristics of combustible materials using fire-generated smell and smoke. Plural sensors including TGS821, TGS2442, and TGS260X were equipped to detect carbon monoxide, hydrogen gas, and gaseous air contaminants which exist in cigarette smoke, respectively. Signal processing algorithm based on the difference of response times in fire-generated gases was implemented with early and accurately fire detection from multiple gas sensing signals. All fire experiments were performed in a virtual fire chamber. The cigarette, cotton fiber, hair, polyester fiber, nylon fiber, paper, and bread were used as a combustible material. This analyzing software and sensor controlling algorithm were embedded into 8-bit micro-controller. Also the detected multiple gas sensor signals were simultaneously transferred to the personnel computer. The results showed that the air pollution detecting sensor could be used as an efficient sensor for a fire detector which showed high sensitivity in volatile organic compounds. The proposed detecting algorithm may give more information to us compared to the conventional method for determining a threshold value. A fire detecting device with a multi-sensor is likely to be a practical and commercial technology, which can be used for domestic and office environment as well as has a comparatively low cost and high efficiency compared to the conventional device.

Direct Transfer Printing of Nanomaterials for Future Flexible Electronics

  • Lee, Tae-Yun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.3.1-3.1
    • /
    • 2011
  • Over the past decade, the major efforts for lowering the cost of electronics has been devoted to increasing the packaging efficiency of the integrated circuits (ICs), which is defined by the ratio of all devices on system-level board compared to the area of the board, and to working on a larger but cheaper substrates. Especially, in flexible electronics, the latter has been the favorable way along with using novel nanomaterials that have excellent mechanical flexibility and electrical properties as active channel materials and conductive films. Here, the tool for achieving large area patterning is by printing methods. Although diverse printing methods have been investigated to produce highly-aligned structures of the nanomaterials with desired patterns, many require laborious processes that need to be further optimized for practical applications, showing a clear limit to the design of the nanomaterial patterns in a large scale assembly. Here, we demonstrate the alignment of highly ordered and dense silicon (Si) NW arrays to anisotropically etched micro-engraved structures using a simple evaporation process. During evaporation, entropic attraction combined with the internal flow of the NW solution induced the alignment of NWs at the corners of pre-defined structures. The assembly characteristics of the NWs were highly dependent on the polarity of the NW solutions. After complete evaporation, the aligned NW arrays were subsequently transferred onto a flexible substrate with 95% selectivity using a direct gravure printing technique. As proof-of-concept, flexible back-gated NW field effect transistors (FETs) were fabricated. The fabricated FETs had an effective hole mobility of 0.17 $cm2/V{\cdot}s$ and an on/off ratio of ${\sim}1.4{\times}104$. These results demonstrate that our NW gravure printing technique is a simple and effective method that can be used to fabricate high-performance flexible electronics based on inorganic materials.

  • PDF

Fabrication of Transparent Ultra-thin Single-walled Carbon Nanotube Films for Field Emission Applications

  • Jang, Eun-Soo;Goak, Jung-Choon;Lee, Han-Sung;Kim, Myoung-Su;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.353-353
    • /
    • 2008
  • Carbon nanotubes (CNTs) are attractive for field emitter because of their outstanding electrical, mechanical, and chemical properties. Several applications using CNTs as field emitters have been demonstrated such as field emission display (FED), backlight unit (BLU), and X-ray source. In this study, we fabricated a CNT cathode using transparent ultra-thin CNT film. First, CNT aqueous solution was prepared by ultrasonically dispersing purified single-walled carbon nanotubes (SWCNTs) in deionized water with sodium dodecyl sulfate (SDS). To obtain the CNT film, the CNT solution in a milliliter or even several tens of micro-litters was deposited onto a porous alumina membrane through vacuum filtration process. Thereafter, the alumina membrane was solvated by the 3 M NaOH solution and the floating CNT film was easily transferred to an indium-tin-oxide (ITO) glass substrate of $0.5\times0.5cm^2$ with a film mask. The transmittance of as-prepared ultra-thin CNT films measured by UV-Vis spectrophotometer was 68~97%, depending on the amount of CNTs dispersed in an aqueous solution. Roller activation, which is a essential process to improve the field emission characteristics of CNT films, increased the UV-Vis transmittance up to 93~98%. This study presents SEM morphology of CNT emitters and their field emission properties according to the concentration of CNTs in an aqueous solutions. Since the ultra-thin CNT emitters prepared from the solutions show a high peak current density of field emission comparable to that of the paste-base CNT emitters and do not contain outgassing sources such as organic binders, they are considered to be very promising for small-size-but-high-end applications including X-ray sources and microwave power amplifiers.

  • PDF