• Title/Summary/Keyword: Micro-inverter

Search Result 113, Processing Time 0.025 seconds

Simulation and Design of ACRDCL Inverter Using SPICE (SPICE를 이용한 ACRDCL 인버터의 시뮬레이션 및 설계)

  • Han, Soo-Bin;Jung, Bong-Man;Kim, Gyu-Duck;Choi, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.435-437
    • /
    • 1994
  • Cramped resonant DC link inverter is analyzed by widely available software such as SPICE. In this paper, the model of ACRDCL which is based on converter switch function rather than actual circuit configuration is used. Power circuit is modeled by functional transfer function and the controller is based on the macro-model. Computer memory and runtime are based reduced compared to micro-model. Overall performance including control strategy and harmonic characteristics in the steady state can be analyzed easily.

  • PDF

The Development & Performance Test of 10[kW] Power Conditioning System for Microgrid (마이크로그리드용 10[kW] PCS 개발 및 성능시험)

  • Lee, Hak-Ju;Chae, Woo-Kyu;Park, Jung-Sung;Kim, Ju-Yong;Kim, Chan-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.55-62
    • /
    • 2011
  • PCS(Power Conditioning System) is the necessary component in Microgrid, composed of multiple distributed generators and energy storage system. In this paper, the functions of PCS are defined and 10[kW] PCS for PV and BESS are developed. To apply PCSs to Microgrid, this paper presents a 3-phase inverter with the decoupling current controller, voltage controller and DPLL control system. PCSs were applied to 120[kW] pilot plant and its performance tests were carried out. Test results of PCS at each operation mode show stable in Microgrid.

Development of Dimming control system for 400W Metal Halide Lamp by Electronic Ballast and Power Line Modem (전력선모뎀 및 조광제어 안정기를 이용한 400W Metal Halide Lamp의 조광제어 시스템 개발)

  • Park, Chong-Yeon;Choi, Wang-Seop
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.193-198
    • /
    • 2009
  • In this paper, we developed remote dimming control system of electronic ballast for 400W metal halide lamp. This ballast could limit ignition current and soft start-up technique by the inverter with LCsCp resonance tank. The dimming circuit can dim from 400W to 200W by varying of the inverter switching frequency. The PLM consists of coupling circuit, BPF(Band-Pass Filter), FSK(Frequency Shift Keying) Modem and ${\mu}$-controller(Micro Controller). By coupling electronic ballast with PLM, the system that able to dimming the lamp through PLM is demonstrated by experimental results.

  • PDF

Resonant Inverter Modeling for SPICE Simulation (SPICE 시뮬레이션을 위한 공진형 인버터 모델링 연구)

  • Han, Soo-Bin;Jung, Bong-Man;Shin, Dong-Ryul;Choi, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.715-717
    • /
    • 1993
  • Resonant Inverter is analyzed by means of widely available software such a SPICE. In this paper, macro-model of RDCLI is used which is based on converter switch function rather than actual circuit configuration. Computer memory and nm time are greatly reduced compared to micro-model by using macro-model. System overall performance including control strategy and harmonic characteristics can be analyzed easily. This method is suited for stead state analysis and transition analysis at system level.

  • PDF

Single-phase Control Algorithm of 4-Leg type PCS for Micro-grid System (마이크로그리드용 4-Leg 방식 PCS의 각상 개별제어 알고리즘에 관한 연구)

  • Kim, Seung-Ho;Choi, Sung-Sik;Kim, Seung-Jong;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.817-825
    • /
    • 2017
  • The AC-common bus microgrid system can overcome several weaknesses of the DC microgrid system by interconnecting the DC/AC inverters used for renewable energy with an AC network. Nevertheless, the unbalanced loads inherent in the electric power systems of island and small communities can deteriorate the performance of the AC microgrid system. This is because of the limited voltage regulation capability and mixed power flow in the voltage source inverter. In order to overcome the unbalanced load condition, this paper proposes a voltage and current control algorithm for the 4-leg inverter based on the single phase d-q control method, as well as the modeling of the voltage controller using Matlab/Simulink S/W. From the S/W simulation and experiment of the 250KW proto-type inverter, it is confirmed that the proposed algorithm is a useful tool for the design and operation of the AC microgrid system.

Induction motor Modeling and Converter circuit Simulation using Pspice (Pspice를 이용한 유도전동기 모델링과 전력변환회로 시뮬레이션)

  • 서영수;백동현;조문택;이상봉
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.148-151
    • /
    • 1997
  • Pspice is not offered a library of mechanical factor like DC Motor, Induction Motor which is needed in Power Electronics field. Therefore, Induction Motor was made library by Equibalent circuit in this study. This model is applied in Voltage-Type inverter and is investigated its characteristics. IGBT is tested by two methods of Macro and Micro Modeling as semiconductor. PWM signal is used of pulse signal. Voltage and current, speed was simulated for assurance of model.

  • PDF

Device Characteristic and Voltage-Type Inverter Simulation by Power IGBT Micro Modeling (전력용 IGBT의 미시적인 모델링에 의한 소자특성 및 전압형 인버터 시뮬레이션)

  • 서영수;백동현;조문택;이상훈;허종명
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.63-66
    • /
    • 1996
  • An micro model for the power insulated Gate Bipolar Transistor(IGBT) is developed. The model consistently described the IGBT steady-state current-voltage characteristics and switching transient current and voltage waveform for all loading conditions. The model is based on the equivalent circuit of a MOSFET with supplies the base current to a low-gain, high-level injection, bipolar transistor with its base virtual contact at the collector and of the base. Model results are compared with measured turn-on and turn-off waveform for different drive, load, and feedback circuits.

  • PDF

A Design of Power Converter for Fuel Cell Controlled by Micro-Processor (마이크로프로세서에 의해 제어되는 연료전지용 전력변환 회로 설계)

  • Won, Chung-Yuen;Jang, Su-Jin;Lee, Won-Chul;Lee, Tae-Won;Kim, Soo-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.61-68
    • /
    • 2004
  • Recently, a fuel cell is remarkable for new generation system. The fuel cell is characterized by low voltage and high current. Therefor, for connecting to general load, it needs both a step up converter and an inverter. The proposed system consists of an isolated DC-DC converter to boost the fuel cell voltage to 380[Vdc] and a PWM inverter with LC filter to convert the dc voltage to single phase 220[Vac]. Also, bi-directional DC-DC converter for fuel cell generation system is composed to improve load response characteristic. In this paper, full bridge converter and the single phase inverter are designed and installed for fuel cell. Simulation and experiment verify that fuel cell generation system could be applied for the distributed generation.

Stationary Reference Frame Voltage Controller for Single Phase Grid Connected Inverter for Stand Alone Mode (계통 연계형 단상 인버터의 단독 운전 모드를 위한 정지좌표계 전압 제어기)

  • Hong, Chang-Pyo;Kim, Hag-Wone;Cho, Kwan-Yuhl;Lim, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.517-525
    • /
    • 2015
  • A grid connected inverter must be operated as the main electricity source under an isolated condition caused by the grid problem. Conventionally, the dual loop controller is used for the grid inverter, and the controller is used for control under the stand-alone mode. Generally, the PI(Proportional - Integral) controller is highly efficient under a synchronous reference frame, and stable control can be available. However, in this synchronous frame-based control, high-quality DSP is required because many sinusoidal calculations are necessary. When the PI control is conducted under a stationary frame, the controller constructions are made simple so that they work even with a low-price micro controller. However, given the characteristics of the PI controller, it should be designed with the phase of reference voltage considered. Otherwise, the phase delay of the output voltage can occur. Although the current controller also has a higher bandwidth than the voltage controller, distortion of the voltage is difficult to avoid only by the rapid response of the PI controller, as a sudden load change can occur in the nonlinear load. In this study, a new control method that solves the voltage controller bandwidth problem and rapidly copes with it even in the nonlinear load situation is proposed. The validity of the proposed method is proved by simulation and experimental results.

A Study on the Starter Control of the Turbo Generator (터보 제너레이터의 시동기 제어에 관한 연구)

  • 박승엽;노민식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.3
    • /
    • pp.286-293
    • /
    • 2004
  • This paper presents the result of a study on the starter control for a turbo generator. Because a starter in gear box type turbo-generator system is composed of gearbox and brush DC motor, it should be replaced with High Speed Generator(HSG)) in HSG type Turbo-generator. There-ore, it is necessary to design a new starting algorithm and starter. In gearbox type system, brush DC motor is rotated to the designed speed using low voltage-high current battery power. After brush DC motor speed is increased to several times by gearbox, gas turbine engine can be rotated to designed starting speed. If we implement a starter with High Speed Generator(HSG), it is necessary to drive high-speed generator to high-speed motor. High-speed generator with permanent magnet on rotor has a low leakage inductance fur driving high-speed rotation, and it is necessary high DC link voltage for inverter when High-speed generator is driven to high speed. This paper presents result of development of the boost converter for converting high voltage DC from low battery voltage and design of the inverter for controlling a high frequency current to be injected to motor winding. Also, we show performance of the designed starter by driving the turbo generator.