• Title/Summary/Keyword: Micro-hole machining

Search Result 104, Processing Time 0.024 seconds

Micro-shaft and Micro-hole Machining for Micro Punching (마이크로 펀칭용 미세축, 미세구멍의 가공)

  • Ryu S. H.;Cho P. J.;Lee K. H.;Chu C. N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.239-244
    • /
    • 2002
  • In this study, we developed the manufacturing technology of micro-hole and micro-shaft for micro punching system using micro electrical discharge machining and micro electro chemical machining. Micro punching dies of tungsten carbide with $55\;{\mu}m\;and\;110\;{\mu}m$ diameter and $250\;{\mu}m$ depth were made by micro electrical discharge machining. The form accuracy and surface roughness of die hole were pretty good and it was shown that the punched hole quality was fine. WC micro-shaft with $30\;{\mu}m$ diameter was made by the multistep micro electro chemical machining. The developed technologies can be effectively used in precision manufacturing of micro punching die and mass production of micro-shaft.

  • PDF

Control of Taper Shape in Micro-Hole Machining by Micro-EDM (방전 가공을 이용한 미세 구멍 가공 시 발생하는 테이퍼 형상의 제어)

  • Kim Dong Jun;Yi Sang Min;Lee Young Soo;Chu Chong Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.52-59
    • /
    • 2005
  • When a micro hole is machined by EDM with a cylindrical electrode, the hole diameter is different at the inlet and the outlet of the micro hole. The taper shape of the micro hole is caused by not only wear of the electrode but the eroded particles. The eroded particles cause secondary discharge during machining the micro hole. As a result, the diameter of the inlet becomes larger than that of the outlet. In this paper, a new method is proposed to reduce the difference in diameter between the inlet and the outlet of the hole. Observed was that the feed depth and machining time affect the formation of taper shape On this experimental basis, ultrasonic vibration was applied to reduce machining time, and capacitance was changed during machining to use the difference in discharging energy of different capacitances. Using the proposed method, a straight micro-hole was fabricated.

Micro-machining of Glass Air Hole using Ultrasonic Machining (초음파 가공에 의한 미세 에어홀 가공 기술)

  • 김병희;전성건;남권선;김헌영;전병희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.48-52
    • /
    • 2004
  • Ultrasonic machining is effective for machining of extreme hard and brittle materials, including glass, ceramic, carbide, graphite. The major machining principle involves the direct hammering as well as the impact of abrasive panicles on the workpiece. Also, it involve cavitation erosion. The general workpiece is flat side. This study attempted micro hole machining of a curved surface of glass tube. Ultrasonic machining is fault of the slow machining speed. An experiment does and got 16 seconds validity machining time as increasing the processing speed. Moreover, entrance crack and surface roughness was similar both machining speed is slow and fast. Several micro hole of glass tube machined using one micro tool, but tool wear is infinitesimal.

  • PDF

A Study on Micro-hole Machining Technology using Ultrasonic vibration (초음파 진동을 이용한 미세구멍 가공기술)

  • 이석우;최헌종;이봉구;최영재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.231-234
    • /
    • 2002
  • Ultrasonic machining technology has been developed over recent years for the manufacture of cost-effective and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile. Ultrasonic machining process is an efficient and economical means of precision machining of ceramic materials. The process is non-thermal, non-chemical and non-electric and hardly creates changes to the mechanical properties of the brittle materials machined. This paper describes the characteristics of the micro-hole of $\textrm{Al}_2\textrm{O}_3$ by ultrasonic machining with tungsten carbide tool. The effects of various parameters of ultrasonic machining, including abrasives, machining force and pressure, on the material removal rate, hole quality, and tool wear presented and discussed. The ultrasonic Machining of micro-holes in ceramics has been under taken and the machining mechanism in the ultrasonic machining of ceramics based on the fracture-mechanics concept has been analyzed.

  • PDF

Localized Electro-chemical Micro Drilling Using Ultra Short Pulses (초단펄스 전해 국부화를 이용한 미세구멍 가공)

  • 안세현;류시형;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.213-220
    • /
    • 2003
  • By the localization of electro-chemical dissolution region, we succeeded in a few micrometer size hole drilling on stainless steel with the radial machining gap of about 1 ${\mu}{\textrm}{m}$. Tens of nanosecond duration voltage pulses were applied between WC micro-shaft and stainless steel in the 0.1 M $H_2SO_4$ solution. Pt balance electrode was used to drill the high aspect ratio micro-hole without generation of Cr oxide layer on the machined surface. The effects of applied voltage, pulse duration, and pulse period on localization distance were investigated according to machining time. We suggested the taper reduction technique especially brought up on blind-hole machining. High quality micro-holes with 8 ${\mu}m$ diameter with 20 ${\mu}m$ depth and 12 ${\mu}m$ diameter with 100 ${\mu}m$ depth were drilled on 304 stainless steel foil. The various hole shapes were also produced including stepped holes and taper free holes.

Fume Particle Dispersion in Laser Micro-Hole Machining with Oblique Stagnation Flow Conditions (경사 정체점 유동이 적용된 미세 홀 레이저 가공 공정의 흄 오염입자 산포특성 연구)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.77-82
    • /
    • 2021
  • This numerical study focuses on the analysis of fume particle dispersion characteristics over the surface of target workpiece in laser micro-hole machining process. The effects of oblique stagnation flow over fume generating machining point are examined by carrying out a series of three-dimensional random particle simulations along with probabilistic particle generation model and particle drag correlation of low Reynolds number. Present computational model of fume particle dispersion is found to be capable of assessing and quantifying the fume particle contamination in precision hole machining which may influenced by different types of air flow patterns and their flow intensity. The particle size dependence on dispersion distance of fume particles from laser machining point is significant and the effects of increasing flow oblique angle are shown quite differently when slot blowing or slot suction flows are applied in micro-hole machining.

Machining of Micro-scale Shapes using Micro-EDM Process (Micro-EDM 공정을 이용한 미세 형상 가공)

  • 김영태;박성준;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.109-117
    • /
    • 2003
  • With development of high advanced technologies and skills, micro machining techniques also are being more functional and smaller. Some of the recently developed micro machining technologies are micro drilling, micro EDM, WEDG, LBM, micro milling, micro UVM etc. In these micro machining techniques, Micro -EDM is generally used for machining micro holes, pockets, and micro structures in difficult-cut-materials. For machining micro structures, first of all, tool electrode should be fabricated by WEDG process. In micro-EDM, parameters such as peak current, pulse width, duration time are very important to fabricate the tool electrode and micro structures. Developed experimental equipments are composed of RLC circuit with PWM. In this paper, using developed micro EDM machine, the characteristics of micro electro discharge machining are investigated at micro holes, slot, and pocket machining etc. Also the trends of tool wear are investigated in case of hole and slot machining.

Effect of Machining Conditions on machining gap in Micro Electrochemical Drilling (미세 전해 구멍 가공에서의 가긍 조건에 따른 가공 간극 변화 특성)

  • Kim, Bo-Hyun;Park, Byung-Jin;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.163-169
    • /
    • 2005
  • Micro hole is ode of basic elements for micro device or micro parts. Micro electrochemical machining (ECM) can be applied to the machining of micro holes less than 50 ${\mu}m$ in diameter, which it is not easy to apply other techniques to. For the machining of passivating metals such as stainless steel, machining conditions should be chosen carefully to prevent a passive layer. The machining conditions also affect the machining resolution, In this paper, machining characteristics of micro ECM were investigated according to machining conditions such as electrolyte concentration and pulse conditions. From the investigation, optimal machining conditions were suggested for micro ECM of stainless steel.

Machining Rate and Electrode Wear Characteristics in Micro-EDM of Micro-Holes (미세구멍의 미세방전 가공에서 가공율과 전극소모 특성)

  • Kim, Gyu-Man;Kim, Bo-Hyun;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.94-100
    • /
    • 1999
  • Micro-EDM is widely used in machining of miro-parts such as micro-shafts and micro-holes. In order to select proper machining conditions and to reduce the machining time, it is necessary to understand machining characteristics under various machining conditions. Micro-hole machining tests were performed with round shape electrodes with different capacitances and voltages of the power source. The effects of the electrode rotational speed and diameter on the machining rate were also observed. From the experimental results, it was found that capacitance and voltage have significant effects on machining rate and the machined surface integrity. With higher capacitance and higher voltage, higher machining rate was observed together with poorer surface integrity. The electrode diameter was also found to have an effect on the machining rate and electrode wear.

  • PDF

Micro EDM with Ultrasonic Work Fluid Vibration for Deep Hole Machining (깊은 구멍 가공을 위한 가공액 초음파 가진 미세 방전가공)

  • Je Sung Uk;Lee Hae Sung;Chu Chong Nam;Kim Duck Whan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.47-53
    • /
    • 2005
  • Microholes with high aspect ratio are required in microstructures. Among various methods for producing the microhole, micro electrical discharge machining (MEDM) is very effective and useful process. But, it is difficult to machine the high aspect ratio holes below $100\;{\mu}m$ in diameter because machining condition becomes unstable due to bad removal of debris at deep hole. In this paper, ultrasonic vibration is applied to MEDM work fluid to make a high aspect ratio micro hole. It is shown that the vibration is effective in circulating the debris and increasing the machining rate. As a result, produced was a micro hole with $92\;{\mu}m$ entrance diameter, $81\;{\mu}m$ exit diameter and aspect ratio 23.