• Title/Summary/Keyword: Micro-grooved Surface

Search Result 25, Processing Time 0.03 seconds

Friction Property of Angle and Width Effect for Micro-grooved Crosshatch Pattern under Lubricated Sliding Contact (Micro-scale Grooved Crosshatch Pattern의 각도 및 폭에 따른 실험적 미끄럼마찰특성)

  • Chae, Young-Hun;Kim, Seock-Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.110-116
    • /
    • 2011
  • The current study investigated the friction property of angle and width effect for micro-scale grooved crosshatch pattern on SKD11 steel surface against bearing steel using pin-on-disk type. The samples fabricated by photolithography process and then these are carry out the electrochemical etching process. We discuss the friction property due to the influence of a hatched-angle and a width of groove on contact surface. We could be explained the lubrication mechanism for a Stribeck curve. So It was found that the friction coefficient depend on an angle of the crosshatch on contact surface. It was thus verified that micro-scale crosshatch grooved pattern could affect the friction reduction. Also, it is play an important a width of groove to be improved the friction property. I was found that friction property has a relationship between a width and an angle for micro-grooved pattern.

Sliding Friction Property of Angle Effect for Crosshatch Micro-grooved Pattern under Lubricated (마이크로 크기를 가지는 빗살무늬 그루우브 패턴의 빗살각도변화에 대한 실험적 마찰특성)

  • Kim, Seock-Sam;Chae, Youn-Ghun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.94-99
    • /
    • 2011
  • Micro-scale surface pattern has an benefit of tribological application under lubricated sliding contact. Therefore, a special pattern, that has to reduce the coulomb friction under contact, is considered to be necessary for improved efficiency of machines. The current study investigated the friction property of angle effect for micro-scale grooved crosshatch pattern on bearing steel surface using pin-on-disk type. The samples fabricated by photolithography process and then these are carry out the electrochemical etching process. We discuss the friction property due to the influence of hatched-angle on contact surface. We could be explained the lubrication mechanism for a Stribeck curve. It was found that the friction coefficient depend on an angle of the crosshatch on contact surface. It was thus verified that micro-scale crosshatch grooved pattern could affect the friction reduction.

Effect of Friction Property for Angles of Micro-scale Crosshatch Grooved Surface Pattern under Sliding Lubricated Contact (마이크로 Crosshatch 그루우브 표면패턴의 각도에 따른 미끄럼마찰특성)

  • Chae Y.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.165-166
    • /
    • 2006
  • Surface pattern of tribological applications is an attractive technology of engineered surface. Therefore, friction reduction is considered to be necessary for improved efficiency of machines. This study investigated the effect of friction property fur angles of micro-scale crosshatch grooved surface pattern on bearing steel flat mated with pin-on-disk. We obtain sample which can be fabricated by photolithography process. We discuss friction property depend on an angle of cross-hatch grooved pattern. We can verify the lubrication mechanism as a Stribeck curve, which has a relationship between the friction coefficient and a dimensionless parameter under the lubrication condition. It was found that the friction coefficient was related to angle of crosshatch on surface, even when surface pattern was the same density.

  • PDF

MARGINAL TISSUE RESPONSE TO DIFFERENT IMPLANT NECK DESIGN

  • Bae, Hanna-Eun-Kyong;Chung, Moon-Kyu;Cha, In-Ho;Han, Dong-Hoo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.6
    • /
    • pp.602-609
    • /
    • 2008
  • STATEMENT OF PROBLEM: Loss of the marginal bone to the first thread have been accepted but continuous effort have been made to reduce this bone loss by varying implant design and surface texture. PURPOSE: This animal study has examined the histomorphometric variations between implants with micro-thread, micro-grooved and turned surfaced neck designs. MATERIAL AND METHODS: Four mongrel dogs have been used the premolars removed and left to heal for three months. One of each implant systems with turned neck, micro-thread and micro-grooved were placed according to the manufacturers’protocol and left submerged for 8 and 12 weeks. These were then harvested for histological examination. RESULTS: The histologically all samples were successfully ossointegrated and active bone remodelling adjacent to implants. With the micro-grooved implants 0.40 mm and 0.26 mm of the marginal bone level changes were observed at 8 and 12 weeks respectively. The micro-threaded implants had changes of 0.79 mm and 0.56 mm at 8 and 12 weeks respectably. The turned neck designed implants had marginal bone level changes of 1.61 mm and 1.63 mm in 8 and 12 weeks specimens. A complex soft tissue arrangement could be observed against micro-threaded and micro-grooved implant surfaces. CONCLUSION: Within the limitations of this study, it could be concluded that implants with micro-grooved had the least and the turned neck designed implants had the most changes in the marginal bone level. The textured implant surfaces affect soft tissue responses.

Residual Stress Prediction and Hardness Evaluation within Cross Ball Grooved Inner Race by Cold Upsetting Process (냉간 업셋팅 공정에 의한 경사형 볼 그루브를 갖는 내륜의 잔류응력 예측 및 경도 평가)

  • T.W. Ku
    • Transactions of Materials Processing
    • /
    • v.32 no.4
    • /
    • pp.180-190
    • /
    • 2023
  • This study deals with residual stress prediction and hardness evaluation within cross ball grooved inner race fabricated by cold upsetting process consisted of upsetting and ejection steps. A raw workpiece material of AISI 5120H (SCr420H) is first spheroidized and annealed, then phosphophyllite coated to form solid lubricant layer on its outer surface. To investigate influences of the heat treatment, uni-axial compression tests and Vickers micro-hardness measurements are conducted. Three-dimensional elasto-plastic FE simulations on the upsetting step and the ejection one are performed to visualize the residual stress and the ductile (plastic deformation) damage. External feature of the fabricated inner race is fully captured by using an optical 3D scanner, and the micro-hardness is measured on internal cross-sections. Consequently, the dimensional compatibility between the simulated inner race and the fabricated one is ensured with a difference of under 0.243mm that satisfied permissible error range of ±0.50mm on the grooved surface, and the predicted residual stress is verified to have similar distribution tendency with the measured Vickers micro-hardness.

Prediction of Frictional behavior according to geometrical contact condition using FFT-based analysis (FFT해석을 이용한 기하학적 접촉조건에 따른 마찰거동예측)

  • 성인하;이형석;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.13-18
    • /
    • 2001
  • In this paper, FFT(Fast Fourier Transform) analysis of friction was suggested as a method to interpret the contact conditions. Micro-grooves with various dimensions were fabricated on the silicon surface to investigate the frictional behavior with respect to the change in geometrical contact condition. Frictional forces between micro-grooved surfaces and spheres modeled as surface asperities were measured using a micro-tribotester which was built inside a SEM(Scanning Electron Microscope). The experimental results show that the relative dimensions and distributions of contact asperities between two surfaces can be predicted by the power spectrum and the main frequency in FFT-based analysis of friction coefficient. Also, it was shown that the friction coefficient for multi-asperities was the result of the superposition of that for each asperity.

  • PDF

Friction Property for Angles of Micro-crosshatch Grooved Surface Pattern under Lubricated Sliding Contact (마이크로 Crosshatch 그루우브 표면패턴의 각도에 따른 미끄럼 마찰특성)

  • Chae, Young-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.1 s.190
    • /
    • pp.79-84
    • /
    • 2007
  • Some surface pattern of tribological application is an attractive technology of engineered surface. Therefore, friction reduction is considered to be necessary for improved efficiency of machine. This study investigated the effect of friction property for angles of micro-crosshatch groove surface pattern on bearing steel using pin-on-disk test. We obtain sample which can be fabricated by photolithography process. We discuss the friction property depend on an angle of crosshatch groove surface pattern. We can verify the lubrication mechanism as Stribeck curve, which has a relationship between the friction coefficient and a dimensionless parameter under the lubrication condition. It was found that the friction coefficient was related to angle of crosshatch groove pattern on contact surface.

Waviness measurement of workpiece with a Large Surface Area (대면적 공작물의 기하학적 Waviness 측정)

  • Kang D.B.;Son S.M.;Ah J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.115-118
    • /
    • 2005
  • A workpiece with a large surface area is likely to be uneven due to form error and waviness. These geometric disturbances can cause inaccurate micro shapes to be formed when micro features are micro-grooved into the surface and cause the resulting workpiece to fail to function as desired. Thus, real-time measurement and compensation is required to guarantee the form accuracy of micro features while machining a workpiece with a large surface area. In this study, a method is suggested for real-time measurement of geometric error for the micro grooving of a large flat surface using a laser displacement sensor. The measurements are demonstrated for the workpieces with large surface areas and the experimental results show that the waviness and form error are well detected.

  • PDF