• Title/Summary/Keyword: Micro-grid

Search Result 287, Processing Time 0.023 seconds

A Study for Analysis of Micro Heat Grid Configuration and Deduction of Optimal Size in Hydrogen Cities (수소도시 내 마이크로 히트그리드 구성 방안 및 최적 규모 산정 연구)

  • JONGJUN LEE;SEUL-YE LIM;KYOUNG A SHIN;NAMWOONG KIM;DO HYEONG KIM;CHEOL GYU PARK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.845-855
    • /
    • 2022
  • In response to climate change, the world is continuing efforts to reduce fossil fuels, expand renewable energy, and improve energy efficiency with the goal of achieving carbon neutrality. In particular, R&D is being made on the value chain covering the entire cycle of hydrogen production, storage, transportation, and utilization in order to shift the energy supply system to focus on hydrogen energy. Hydrogen-based energy sources can produce heat and electricity at the same time, so it is possible to utilize heat energy, which can increase overall efficiency. In this study, calculation of the optimal scale for hydrogen-based cogeneration and the composition of heat sources were reviewed. It refers to a method of the optimal heat source size according to the external heat supply and heat storage to be considered. The results of this study can be used as basic data for establishing a hydrogen-based energy supply model in the future.

Comparison and Analysis for the Topology of Bladeless Wind Power Generator (블레이드리스 풍력발전기의 토폴로지에 관한 비교·분석)

  • Junhyuk Min;Sungin Jeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.4
    • /
    • pp.147-154
    • /
    • 2024
  • This study focuses on the modeling and analysis of the linear generator for a bladeless wind power generation to overcome the limitations and drawbacks of conventional wind turbines. A bladeless wind power generation system has the advantages of low land requirement for installation and maintenance cost compared to a blade wind power turbine. Nevertheless, question concerning the generator topology are not satisfying answered. The goal of the research is to compare and analyze the characteristics of horizontal and vertical structures of linear generator for bladeless wind power systems. The proposed topology will be analyzed using magnetic energy by equivalent magnetic circuit method, and then it has been compared and evaluated by finite element method. The results of this project will give elaborate information about new generator structures for wind power system and provide insights into the characteristics of bladeless wind power generation.

Fabrication of MEMS Test Socket for BGA IC Packages (MEMS 공정을 이용한 BGA IC 패키지용 테스트 소켓의 제작)

  • Kim, Sang-Won;Cho, Chan-Seob;Nam, Jae-Woo;Kim, Bong-Hwan;Lee, Jong-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.11
    • /
    • pp.1-5
    • /
    • 2010
  • We developed a novel micro-electro mechanical systems (MEMS) test socket using silicon on insulator (SOI) substrate with the cantilever array structure. We designed the round shaped cantilevers with the maximum length of $350{\mu}m$, the maximum width of $200{\mu}m$ and the thickness of $10{\mu}m$ for $650{\mu}m$ pitch for 8 mm x 8 mm area and 121 balls square ball grid array (BGA) packages. The MEMS test socket was fabricated by MEMS technology using metal lift off process and deep reactive ion etching (DRIE) silicon etcher and so on. The MEMS test socket has a simple structure, low production cost, fine pitch, high pin count and rapid prototyping. We verified the performances of the MEMS test sockets such as deflection as a function of the applied force, path resistance between the cantilever and the metal pad and the contact resistance. Fabricated cantilever has 1.3 gf (gram force) at $90{\mu}m$ deflection. Total path resistance was less than $17{\Omega}$. The contact resistance was approximately from 0.7 to $0.75{\Omega}$ for all cantilevers. Therefore the test socket is suitable for BGA integrated circuit (IC) packages tests.

Analysis of Filtration Characteristics of Submerged Microfiltration Membranes for Rainwater Filtration (빗물여과를 위한 침지식 정밀여과막의 여과특성 해석)

  • Cho, Hyeongrak;Jung, Jungwoo;Sohn, Jinsik;Lee, Sangho;Chae, Soo Kwon
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.31-38
    • /
    • 2014
  • Rainwater harvesting is a process by which rainwater collected from rooftop or other catchment is purified so that the water can be directly or indirectly used by human beings for beneficial uses. As rainwater is increasingly considered for high quality purposes, membranes have gained an important place in rainwater treatment. It has advantages such as the production of high quality water, small footprint, and affordable energy consumption. Nevertheless, membrane fouling is regarded as a serious problem similar to the cases of water treatment and wastewater reclamation. In this study, we applied microfiltration (MF) membranes for rainwater treatment. In addition, a low pressure ultraviolet (UV) process was also use as a pretreatment to control notonly. To quantify the effect of UV on organic matters, both total organic carbon (TOC) and UV absorbance (UVA) were measured. Moreover, the effect of UV pretreatment on membrane fouling was investigated. Experimental results indicated that the pretreatment of membranes using LPUV was effective to control fouling of MF membranes only when the rainwater was contaminated by algae. This was attributed the reduction and modification of organics after UV treatments. It is likely that the UV/MF process is a promising option for water treatment in decentralized water treatment such as micro water grid systems.

Characteristic of Intermetallic Compounds for Aging of Lead Free Solders Applied to 48 $\mu$BGA (48 $\mu$BGA에 적용한 무연솔더의 시효처리에 대한 금속간화합물의 특성)

  • Shin, Young-Eui;Lee, Suk;Fujimoto, Kozo;Kim, Jong-Min
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.3
    • /
    • pp.37-42
    • /
    • 2001
  • The concerns of the toxicity and health hazard of lead in solders have demanded the research to find suitable lead-free solder alloys. It was discussed that effect of the intermetallic formation and structure on the reliability of solder joints. In this study, lead-free solder alloys with compositions of Sn/3.5Ag/0.75Cu, Sn/2.0Ag/0.5Cu/2.0Bi were applied to the 48 $\mu$BGA packages. Also, the lead-free solder alloys compared with eutectic Sn/37Pb solder using shear test under various aging temperature. Common $\mu$BGA with solder components was aged at $130^{\circ}C$, $150^{\circ}C$ and $170^{\circ}C$. And the each temperature applied to 300, 600 and 900 hours. The thickness of the intermetallics was measured for each condition and the activation energy for their growth was computed. The fracture surfaces were analyzed using SEM (Scanning Electron Microscope) with EDS (Energy Dispersive Spectroscopy). These results for reliability of lead-free interconnections are discussed.

  • PDF

Development of CFD model for Predicting Ventilation Rate based on Age of Air Theory using Thermal Distribution Data in Pig House (돈사 내부 열환경 분포의 공기연령 이론법 적용을 통한 전산유체역학 환기 예측 모델 개발)

  • Kim, Rack-woo;Lee, In-bok;Ha, Tae-hwan;Yeo, Uk-hyeon;Lee, Sang-yeon;Lee, Min-hyung;Park, Gwan-yong;Kim, Jun-gyu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.61-71
    • /
    • 2017
  • The tracer gas method has an advantage that can estimate total and local ventilation rate by tracing air flow. However, the field measurement using tracer gas has disadvantages such as danger, inefficiency, and high cost. Therefore, the aim of this study was to evaluate ventilation rate in pig house by using the thermal distribution data rather than tracer gas. Especially, LMA (Local Mean Age), which is an index based on the age of air theory, was used to evaluate the ventilation rate in pig house. Firstly, the field experiment was conducted to measure micro-climate inside pig house, such as the air temperature, $CO_2$ concentration and wind velocity. And then, LMA was calculated based on the decay of $CO_2$ concentration and air temperature, respectively. This study compared between LMA determined by $CO_2$ concentration and air temperature; the average error and root mean square error were 3.76 s and 5.34 s. From these results, it was determined that thermal distribution data could be used for estimation of LMA. Finally, CFD (Computational fluid dynamic) model was validated using LMA and wind velocity. The mesh size was designed to be 0.1 m based on the grid independence test, and the Standard $k-{\omega}$ model was eventually chosen as the proper turbulence model. The developed CFD model was highly appropriate for evaluating the ventilation rate in pig house.

Fluid Injection Simulation Considering Distinct Element Behavior and Fluid Flow into the Ground (지반내 입자거동 및 흐름을 고려한 수압작용 모델링)

  • Jeon, Je-Sung;Kim, Ki-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.2
    • /
    • pp.67-75
    • /
    • 2008
  • It is interesting to note that distinct element method has been used extensively to model the response of micro and discontinuous behavior in geomechanics. Impressive advances related to response of distinct particles have been conducted and there were difficulties in considering fluid effect simultaneously. Current distinct element methods are progressively developed to solve particle-fluid coupling focused on fluid flow through soil, rock or porous medium. In this research, numerical simulations of fluid injection into particulate materials were conducted to observe cavity initiation and propagation using distinct element method. After generation of initial particles and wall elements, confining stress was applied by servo-control method. The fluid scheme solves the continuity and Navior-Stokes equations numerically, then derives pressure and velocity vectors for fixed grid by considering the existence of particles within the fluid cell. Fluid was injected as 7-step into the assembly in the x-direction from the inlet located at the center of the left boundary under confining stress condition, $0.1MP{\alpha}\;and\;0.5MP{\alpha}$, respectively. For each simulation, movement of particles, flow rate, fluid velocity, pressure history, wall stress including cavity initiation and propagation by interaction of flulid-paricles were analyzed.