• Title/Summary/Keyword: Micro-flowmeter

Search Result 4, Processing Time 0.021 seconds

Development of Micro-flowmeter for Supplying Photo-resist (포토레지스트 공급용 미소유량계 개발)

  • Kim, Shin-Ho;Cheong, Seon-Hwan;Choi, Seong-Dae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.198-204
    • /
    • 2007
  • This study was carried out to develope a flow control system using to supply PR(photo-resist) in the semi-conductor manufacturing process. The features of this system are to be able to measure the high viscosity and micro-flow. To meet above study object some ideas was induced to design a new concept valve with new material, multi-cross wheel, and new sealing method etc.. As the evaluations on the developed micro-flowmeter it was enough satisfied to use at the IT industries such as photo-resist process.

Fabrication of a Micro Magnetic Flowmeter for Micro Flow Rate Measurement (미소 유량 측정을 위한 마이크로 전 유량계의 제작)

  • Yoon, Hyeun-Joong;Kim, Geun-Young;Jeong, Ok-Chan;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3268-3270
    • /
    • 1999
  • This paper presents the fabrication of a micro electromagnetic flowmeter for liquid flow rate measurement. The flowmeter consists of a silicon flow channel with two electrodes and two permanent magnets. The micro flow channel and the detection electrodes are fabricated by the anisotropic etching of two silicon substrates and the metal evaporation process respectively. If conductive fluid passes through a magnet field, electromotive force is generated and detected by two electrodes. When the flow rate is 2.6 ml/sec, the measured output voltage is 7.4 mV.

  • PDF

Flow Signal Characteristics of Small Scale Electromagnetic Flowmeter in Low Conductivity Fluid Measurement (저전도율 유체 측정에서 소형 전자기유량계의 신호 특성)

  • Lim, Ki Won;Jung, Sung Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.613-620
    • /
    • 2016
  • In order to scrutinize the fluid conductivity effects on the electromagnetic flowmeter(EMF) characteristics, a small scale EMF was designed and fabricated. The measuring tube has a $3mm{\times}4mm$ rectangular cross-section, 9 mm length, and a $2mm{\times}3mm$ plate electrode and a ${\Phi}1.5mm$ point electrode. The design parameters, such as the magnetizing frequency and the number of coil turns, and the diameter were optimized. The EMF was tested with a gravimetric calibrator and showed good linearity in the range of 0 to $1.17{\times}10^{-5}m^3/s$. The fluid conductivity was varied between 3 and $11{\mu}S/cm$, and the magnitude of the flow signal was proportional to the fluid conductivity and the wetted area of the electrode. The design information and the test results provide flow measurement techniques for very low flowrate.

Optimal Fuzzy Sliding-Mode Control for Microcontroller-based Microfluidic Manipulation in Biochip System

  • Chung, Yung-Chiang;Wen, Bor-Jiunn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.196-201
    • /
    • 2004
  • In biometric and biomedical applications, a special transporting mechanism must be designed for the ${\mu}$TAS (micro total analysis system) to move samples and reagents through the microchannels that connect the unit procedure components in the system. An important issue for this miniaturization and integration is microfluid management technique, i.e., microfluid transportation, metering, and mixing. In view of this, this study presents an optimal fuzzy sliding-mode control (OFSMC) design based on the 8051 microprocessor and implementation of a complete microfluidic manipulated system implementation of biochip system with a pneumatic pumping actuator, a feedback-signal photodiodes and flowmeter. The new microfluid management technique successfully improved the efficiency of molecular biology reaction by increasing the velocity of the target nucleic acid molecules, which increases the effective collision into the probe molecules as the target molecules flow back and forth. Therefore, this hybridization chip was able to increase hybridization signal 6-fold and reduce non-specific target-probe binding and background noises within 30 minutes, as compared to conventional hybridization methods, which may take from 4 hours to overnight. In addition, the new technique was also used in DNA extraction. When serum existed in the fluid, the extraction efficiency of immobilized beads with solution flowing back and forth was 88-fold higher than that of free-beads.

  • PDF