• Title/Summary/Keyword: Micro-electronics

Search Result 1,010, Processing Time 0.022 seconds

The Study of Color and Hardness of TiN Thin Film by UBM Sputtering System (UBM Sputtering System에 의한 TiN막의 색상과 경도에 관한 연구)

  • Park, Moon Chan;Lee, Jong Geun;Joo, Kyung Bok
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.1
    • /
    • pp.57-62
    • /
    • 2009
  • Purpose: TiN films were deposited on sus304 by unbalanced magnetron sputtering system which was designed and developed as unbalancing the strength of the magnets in the magnetron electrode. The color and hardness of deposited TiN films was investigated. Methods: The cross sections of deposited films on silicon wafer were observed by SEM to measure the thickness of the films, the components of the surface of the films were identified by XPS, the components of the inner parts of the films were observed by XPS depth profiling. XPS high resolution scans and curve fittings of deposited films were performed for quantitative chemical analysis, Vickers micro hardness measurements of deposited films were performed with a nano indenter equipment. Results: The colors of deposited films gradually changed from light gold to dark gold, light violet, and indigo color with increasing of the thickness. It could be seen that the color change come from the composite change of three compound,$TiO_{x}N_{y}$, $TiO_2$, TiN. Especially, the composite change of$TiO_{x}N_{y}$ compound was thought to affect the color change with respect to thickness. Conclusions: Deposited films had lower than the value of general TiN film in Vickers hardness, which was caused by mixing three TiN, $TiO_2$,$TiO_{x}N_{y}$ compound in the deposited films. The increasing and decreasing of micro hardness with respect to thickness was thought to have something to do with the composite of TiN in the films.

  • PDF

Effect of Amino Modified Siloxanes with Two Different Molecular Weights on the Properties of Epoxy Composites for Adhesives for Micro Electronics (전자소재 접착제용 에폭시에 두 종의 다른 당량수를 갖는 아미노 변성 실록산이 미치는 영향)

  • Yu, Kihwan;Kim, Daeheum
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.104-108
    • /
    • 2011
  • In the non-conductive adhesives (NCAs) for adhesion of micro electro mechanical system (MEMS), there are some problems such as delamination and cracking resulting from the large differences of coefficients of thermal expansion (CTE) between NCAs and substrates. So, the addition of inorganic particles such as silica and nano clay to the CTEs composit have been applied to reduce the CTEs of the adhesives. Additions of the flexibilizers such as siloxanes have also been performed to improve the flexibility of epoxy composite. Amino modified siloxane (AMSs) were used to improve compatibility between epoxy and siloxane. In this study, glass transition temperatures (Tg) and moduli of those composites were measured to confirm the effects of AMS with two different equivalents on thermal/mechanical properties of AMS/epoxy composites. Tg of KF-8010/epoxy composites decreased from 148 to $122^{\circ}C$ and those of X-22-161A/epoxy composites decreased from 148 to $121^{\circ}C$. Moduli of KF-8010/epoxy composites decreased from 2648 to 2143 MPa by adding KF-8010 and moduli of X-22-161A/epoxy composites decreased from 2648 to 2014 MPa. In short, using long Si-O chain AMS leads to a greater decrease in moduli. However, haven't showed significant differences in Tg's.

Implementation of Prosumer Management System for Small MicroGrid (소규모 마이크로그리드에서 프로슈머관리시스템의 구현)

  • Lim, Su-Youn;Lee, Tae-Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.590-596
    • /
    • 2020
  • In the island areas where system connection with the commercial power grid is difficult, it is quite important to find a method to efficiently manage energy produced with independent microgrids. In this paper, a prosumer management system for P2P power transaction was realized through the testing the power meter and the response rate of the collected data for the power produced in the small-scale microgrids in which hybrid models of solar power and wind power were implemented. The power network of the microgrid prosumer was composed of mesh structure and the P2P power transaction was tested through the power meter and DC power transmitter in the off-grid sites which were independently constructed in three places. The measurement values of the power meter showed significant results of voltage (average): 380V + 0.9V, current (average): + 0.01A, power: 1000W (-1W) with an error range within ±1%. Stabilization of the server was also confirmed with the response rate of 0.32 sec. for the main screen, 2.61 sec. for the cumulative power generation, and 0.11 sec for the power transaction through the transmission of 50 data in real time. Therefore, the proposed system was validated as a P2P power transaction system that can be used as an independent network without transmitted by Korea Electric Power Corporation (KEPCO).

Laser Fabrication of Graphene-based Materials and Their Application in Electronic Devices (레이저 유도에 의한 그래핀 합성 및 전기/전자 소자 제조 기술)

  • Jeon, Sangheon;Park, Rowoon;Jeong, Jeonghwa;Hong, Suck Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • Here, we introduce a laser-induced graphene synthesis technology and its applications for the electric/electronic device manufacturing process. Recently, the micro/nanopatterning technique of graphene has received great attention for the utilization of these new graphene structures, which shows progress developments at present with a variety of uses in electronic devices. Some examples of practical applications suggested a great potential for the tunable graphene synthetic manners through the control of the laser set-up, such as a selection of the wavelength, power adjustment, and optical techniques. This emerging technology has expandability to electric/electronic devices combined together with existed micro-packaging technology and can be integrated with the new processing steps to be applied for the operation in the fields of biosensors, supercapacitors, electrochemical sensors, etc. We believe that the laser-induced graphene technology introduced in this paper can be easily applied to portable small electronic devices and wearable electronics in the near future.

An Analysis of Design Elements of Silicon Avalanche LED (실리콘 애벌런치 LED의 설계요소에 대한 분석)

  • Ea, Jung-Yang
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.2
    • /
    • pp.116-126
    • /
    • 2009
  • It is becoming more difficult to improve the device operating speed by shrinking the size of semiconductor devices. Therefore, for a new leap forward in the semiconductor industry, the advent of silicon opto-electronic devices, i.e., silicon photonics is more desperate. Silicon Avalanche LED is one of the prospective candidates to realize the practical silicon opto-electronic devices due to its simplicity of fabrication, repeatability, stability, high speed operation, and compatibility with silicon IC processing. We conducted the measurement of the electrical characteristics and the observation of the light-emitting phenomena using optical microscopy. We analyzed the influence of the design elements such as the shape of the light-emitting area and the depth of the $n^{+}-p^{+}$ junction with simple device modeling and simulation. We compared the results of simulation and the measurement and explained the discrepancy between the results of the simulation and the measurement, and the suggestions for the improvement were given.

Fabrication of the accelerometer using the nano-gap trench etching (나노갭 트렌치 공정을 이용한 가속도센서 제작)

  • Kim, Hyeon-Cheol;Kwon, Hee-jun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.2
    • /
    • pp.155-161
    • /
    • 2016
  • This paper proposes a novel fabrication method for a capacitive type micro-accelerometer with uniform nano-gap using photo-assisted electro-chemical etching. The sensitivity of the accelerometer should be improved while the electrodes between the inertial mass and the sensing comb should be narrowed. In this paper the nano-gap trench structure is fabricated using the photo-assisted electrochemical etching method. The sensor was designed and analysed using ANSYS simulator. The characteristics of the etching were observed according to the dc bias, the light intensity, the composition of the solution, the temperature of the solution, and the pattern pitch variation. The optimum etching conditions were dc bias of 2V, Blue LED of 20mA, 49wt% HF:DMF:D.I.Water=1:20:10, the pattern pitch of $20{\mu}m$. Uniform trench structure with width of 344nm and depth of $11.627{\mu}m$ are formed using the optimum condition.

Viscoelastic Finite Element Analysis of Filling Process on the Moth-Eye Pattern (모스아이 패턴의 충전공정에 대한 점탄성 유한요소해석)

  • Kim, Kug Weon;Lee, Ki Yeon;Kim, Nam Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1838-1843
    • /
    • 2014
  • Nanoimprint lithography (NIL) fabrication process is regarded as the main alternative to existing expensive photo-lithography in areas such as micro- and nano-electronics including optical components and sensors, as well as the solar cell and display device industries. Functional patterns, including anti-reflective moth-eye pattern, photonic crystal pattern, fabricated by NIL can improve the overall efficiency of such devices. To successfully imprint a nano-sized pattern, the process conditions such as temperature, pressure, and time should be appropriately selected. In this paper, a cavity-filling process of the moth-eye pattern during the thermal-NIL within the temperature range, where the polymer resist shows the viscoelastic behaviors with consideration of stress relaxation effect of the polymer, were investigated with three-dimensional finite element analysis. The effects of initial thickness of polymer resist and imprinting pressure on cavity-filling process has been discussed. From the analysis results it was found that the cavity filling can be completed within 100 s, under the pressure of more than 4 MPa.

SOA-Integrated Dual-Mode Laser and PIN-Photodiode for Compact CW Terahertz System

  • Lee, Eui Su;Kim, Namje;Han, Sang-Pil;Lee, Donghun;Lee, Won-Hui;Moon, Kiwon;Lee, Il-Min;Shin, Jun-Hwan;Park, Kyung Hyun
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.665-674
    • /
    • 2016
  • We designed and fabricated a semiconductor optical amplifier-integrated dual-mode laser (SOA-DML) as a compact and widely tunable continuous-wave terahertz (CW THz) beat source, and a pin-photodiode (pin-PD) integrated with a log-periodic planar antenna as a CW THz emitter. The SOA-DML chip consists of two distributed feedback lasers, a phase section for a tunable beat source, an amplifier, and a tapered spot-size converter for high output power and fiber-coupling efficiency. The SOA-DML module exhibits an output power of more than 15 dBm and clear four-wave mixing throughout the entire tuning range. Using integrated micro-heaters, we were able to tune the optical beat frequency from 380 GHz to 1,120 GHz. In addition, the effect of benzocyclobutene polymer in the antenna design of a pin-PD was considered. Furthermore, a dual active photodiode (PD) for high output power was designed, resulting in a 1.7-fold increase in efficiency compared with a single active PD at 220 GHz. Finally, herein we successfully show the feasibility of the CW THz system by demonstrating THz frequency-domain spectroscopy of an ${\alpha}$-lactose pellet using the modularized SOA-DML and a PD emitter.

The dependence of contractile force for the cardiomyocytes on a different engineered surface (바닥면상태에 따른 심장세포의 수축력 변화)

  • Kim, Jin-Seok;Park, Jung-Yul;Ryu, Suk-Kyu;Baek, Jeong-Eun;Cha, Jung-Hun;Park, Se-Wan;Kim, Hyeon-Chul;Kim, Byung-Kyu;Park, Suk-Ho;Chun, Kuk-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.881-884
    • /
    • 2005
  • We present a microfabricated three-dimensional (3-D) hybrid biopolymer micro cantilever which can measure the contractile force of cardiomyocytes and analyze the force dependence on different types of surface. To make different conditions of the cell seeding surface, we fabricated the specific type of cantilever which was grooved on the surface. The presented cantilever was facilitated to measure bending of the cantilever and to calculate the contractile force of cardiomyocytes. Also, we demonstrate the dependence of the morphology for the cardiomyocytes seeded on a plain surface and a grooved surface. Finally, we show the dependence of force for the cardiomyocytes on a different surface.

  • PDF

Earthquake events classification using convolutional recurrent neural network (합성곱 순환 신경망 구조를 이용한 지진 이벤트 분류 기법)

  • Ku, Bonhwa;Kim, Gwantae;Jang, Su;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.592-599
    • /
    • 2020
  • This paper proposes a Convolutional Recurrent Neural Net (CRNN) structure that can simultaneously reflect both static and dynamic characteristics of seismic waveforms for various earthquake events classification. Addressing various earthquake events, including not only micro-earthquakes and artificial-earthquakes but also macro-earthquakes, requires both effective feature extraction and a classifier that can discriminate seismic waveform under noisy environment. First, we extract the static characteristics of seismic waveform through an attention-based convolution layer. Then, the extracted feature-map is sequentially injected as input to a multi-input single-output Long Short-Term Memory (LSTM) network structure to extract the dynamic characteristic for various seismic event classifications. Subsequently, we perform earthquake events classification through two fully connected layers and softmax function. Representative experimental results using domestic and foreign earthquake database show that the proposed model provides an effective structure for various earthquake events classification.