• Title/Summary/Keyword: Micro-drop method

Search Result 55, Processing Time 0.023 seconds

Islanding Detection for a Micro-Grid based on the Instantaneous Active and Reactive Powers in the Time Domain (시간영역에서 순시 유효/무효전력을 이용한 마이크로그리드의 단독운전 판단)

  • Lee, Young-Gui;Kim, Yeon-Hee;Zheng, Tai-Ying;Kim, Tae-Hyun;Kang, Yong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.22-27
    • /
    • 2012
  • Correct and fast detection of a micro-grid (MG) islanding is essential to the MG since operation, control and protection of the MG depend on an operating mode i.e., an interconnected mode or an islanding mode. When islanding occurs, the frequency of the point of common coupling (PCC) is not the nominal frequency during the transient state owing to the frequency rise or drop of generators in the MG. Thus, the active and reactive power calculated by the frequency domain based method such as Fourier Transform might contain some errors. This paper proposes an islanding detection algorithm for the MG based on the instantaneous active and reactive powers delivered to the dedicated line in the time domain. During the islanding mode, the instantaneous active and reactive powers delivered to the dedicated line are constants, which depend on the voltage of the PCC and the impedance of the dedicated line. In this paper, the instantaneous active and reactive powers are calculated in the time domain and used to detect islanding. The performance of the proposed algorithm is verified under various scenarios including islanding conditions, fault conditions and load variation using the PSCAD/EMTDC simulator. The results indicate that the algorithm successfully detects islanding for the MG.

Modelling of graded rectangular micro-plates with variable length scale parameters

  • Aghazadeh, Reza;Dag, Serkan;Cigeroglu, Ender
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.573-585
    • /
    • 2018
  • This article presents strain gradient elasticity-based procedures for static bending, free vibration and buckling analyses of functionally graded rectangular micro-plates. The developed method allows consideration of smooth spatial variations of length scale parameters of strain gradient elasticity. Governing partial differential equations and boundary conditions are derived by following the variational approach and applying Hamilton's principle. Displacement field is expressed in a unified way to produce numerical results in accordance with Kirchhoff, Mindlin, and third order shear deformation theories. All material properties, including the length scale parameters, are assumed to be functions of the plate thickness coordinate in the derivations. Developed equations are solved numerically by means of differential quadrature method. Proposed procedures are verified through comparisons made to the results available in the literature for certain limiting cases. Further numerical results are provided to illustrate the effects of material and geometric parameters on bending, free vibrations, and buckling. The results generated by Kirchhoff and third order shear deformation theories are in very good agreement, whereas Mindlin plate theory slightly overestimates static deflection and underestimates natural frequency. A rise in the length scale parameter ratio, which identifies the degree of spatial variations, leads to a drop in dimensionless maximum deflection, and increases in dimensionless vibration frequency and buckling load. Size effect is shown to play a more significant role as the plate thickness becomes smaller compared to the length scale parameter. Numerical results indicate that consideration of length scale parameter variation is required for accurate modelling of graded rectangular micro-plates.

Implementation of High Performance Micro Electrode Pattern Using High Viscosity Conductive Ink Patterning Technique (고점도 전도성 잉크 패터닝 기술을 이용한 고성능 미세전극 패턴 구현)

  • Ko, Jeong Beom;Kim, Hyung Chan;Dang, Hyun Woo;Yang, Young Jin;Choi, Kyung Hyun;Doh, Yang Hoi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.83-90
    • /
    • 2014
  • EHD (electro-hydro-dynamics) patterning was performed under atmospheric pressure at room temperature in a single step. The drop diameter smaller than nozzle diameter and applied high viscosity conductive ink in EHD patterning method provide a clear advantage over the piezo and thermal inkjet printing techniques. The micro electrode pattern was printed by continuous EHD patterning method using 3-type control parameters (input voltage, patterning speed, nozzle pressure). High viscosity (1000cps) conductive ink with 75wt% of silver nanoparticles was used. EHD cone type nozzle having an internal diameter of $50{\mu}m$ was used for experimentation. EHD jetting mode by input voltage and applied 1st order linear regression in stable jet mode was analyzed. The stable jet was achieved at the amplitude of 1.4~1.8 kV. $10{\mu}m$ micro electrode pattern was created at optimized parameters (input voltage 1.6kV, patterning speed 25mm/sec and nozzle pressure -2.3kPa).

Implementation of a High Efficiency SCALDO Regulator Using MOSFET (MOSFET를 이용한 고효율 SCALDO 레귤레이터 구현)

  • Kwon, O-Soon;Son, Joon-Bae;Kim, Tea-Rim;Song, Jong-Gyu
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.304-310
    • /
    • 2015
  • A SCALDO(Supercapacitor Assisted LDO) regulator is a new regulator having advantages of a SMPS(Switch Mode Power Supply) which has a good efficiency and a LDO(Low Drop-out) regulator which has stable output characteristics and good EMI(Electro Magnetic Interference) characteristics. However, a conventional SCALDO regulator needs a lot of power consumption to control its switches and it drops an efficiency of the circuit. In this paper, to reduce switching power consumption and improve an efficiency of the circuit, a new SCALDO regulator adopting MOSFETs as its switching parts is proposed and it is found out that the proposed SCALDO regulator has the maximum 9.5% higher efficiency than the conventional SCALDO regulator. We also try to simplify production process of the circuit by changing switching control method of the circuit from MCU(Micro-controller unit) based firmware control to hardware control using a comparator and a T-F/F(Flip Flop).

A Multi-chip Microelectrofluidic Bench for Modular Fluidic and Electrical Interconnections (전기 및 유체 동시접속이 가능한 멀티칩 미소전기유체통합벤치의 설계, 제작 및 성능시험)

  • Chang Sung-Hwan;Suk Sang-Do;Cho Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.373-378
    • /
    • 2006
  • We present the design, fabrication, and characterization of a multi-chip microelectrofluidic bench, achieving both electrical and fluidic interconnections with a simple, low-loss and low-temperature electrofluidic interconnection method. We design 4-chip microelectrofluidic bench, having three electrical pads and two fluidic I/O ports. Each device chip, having three electrical interconnections and a pair of two fluidic I/O interconnections, can be assembled to the microelectofluidic bench with electrical and fluidic interconnections. In the fluidic and electrical characterization, we measure the average pressure drop of $13.6{\sim}125.4$ Pa/mm with the nonlinearity of 3.1 % for the flow-rates of $10{\sim}100{\mu}l/min$ in the fluidic line. The pressure drop per fluidic interconnection is measured as 0.19kPa. Experimentally, there are no significant differences in pressure drops between straight channels and elbow channels. The measured average electrical resistance is $0.26{\Omega}/mm$ in the electrical line. The electrical resistance per each electrical interconnection is measured as $0.64{\Omega}$. Mechanically, the maximum pressure, where the microelectrofluidic bench endures, reaches up to $115{\pm}11kPa$.

A Study on the Effect of Flowrate on the Drop size from Two-Phase Coaxial Nozzle (이상류 동축노즐의 액경에 미치는 공급유량의 영향에 관한 연구)

  • 윤석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.933-942
    • /
    • 1992
  • The effects of the folwrate on the dropsize from the two-phase coaxial nozzle are investigated by using the direct photographic method and the empirical equation is obtained. For the photography, the light source which the life time is the order of 100ns is fabricated and the lens is the zoom lens which has the MICRO function with a teleconvertor. The distillated water and the compressed air of the surrounding temperature are injected and atomized. For the purpose of the exact adjustment and measurement of the flowrates, the two rotameters are used. As a result of this study, the sauter mean diameter of droplets has a tendency for a logarithmic function with air flowrate and for a exponential function with water flowrate.

Implementation of Biosensor Pattern Using Micro Patterning Technique (미세전극 패터닝 기술을 이용한 바이오센서 패턴 구현)

  • Ko, Jeong Beom;Kim, Hyung Chan;Yang, Young Jin;Kim, Hyun Bum;Yang, Seong Wook;Oh, Seung Ho;Doh, Yang Hoi;Choi, Kyung Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.122-128
    • /
    • 2016
  • The Biosensor biosensor pattern was developed by via an EHD (electro-hydro-dynamics (EHD) patterning process that was performed under atmospheric pressure at room temperature in a single step. The drop diameter was smaller than nozzle diameter and applied high viscosity conductive ink was applied in the EHD patterning method to provide a clear advantage over the piezo and thermal inkjet printing techniques. The Biosensor's biosensor's micro electrode pattern was printed by via a continuous EHD patterning method using 3three- type types of control parameters parameter (input voltage, patterning speed, nozzle pressure). High viscosity (1000 cps) conductive ink with 75 wt% of silver nanoparticles was used for experimentation. The incremental result of impedance of biosensor impedance was measured between the antibody ($10ug{\mu}g/ml$) to spore (0.1 ng/ml, 10 ng/ml, and $1ug{\mu}g./ml$) reaction at frequency 493 MHz frequency.

WETTABILITY AND DRUG DELIVERY OF FUNCTIONALLY GRADED NANO-MICRO POROUS TITANIUM SURFACE

  • Yun, Kwi-Dug;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.307-319
    • /
    • 2008
  • STATEMENT OF PROBLEM: It is known that an anodic oxidation technique, one of the methods for the implant surface treatment, remarkably increased surface area, enhanced wettability and accelerated the initial bone healing. Purpose: This study was performed to evaluate the wettability of anodized titanium surface which has a nanotubular structure, to assess osseointegration after the placement of implant with nano-size tubes on tibia of rats and to analyze quantitatively transferable rhBMP-2 on each surface. MATERIAL AND METHOD: Four different kinds of surface-treated titanium discs (polished (machined surface) group, micro (blasting surface) group, nano (anodizedmachined surface) group, and nano-micro (anodized-blasting surface) group) were fabricated (n=10). Three different media were chosen to measure the surface contact angles; distilled water, plasma and rhBMP-2 solution. After a single drop (0.025 $m{\ell}$) of solution, the picture was taken with the image camera, and contact angle was measured by using image analysis system. For the test of osseointegration, 2 kinds of anodized surface (anodized-machined surface, anodized-blasting surface) implants having 2.0 mm in diameter and 5.0 mm in length inserted into the tibia of Wistar rats. After 3 weeks, tibia were harvested and the specimens were stained with hematoxylin and eosin for histological analysis. To test the possibility of drug delivery, after soaking sample groups in the concentration of 250 ng/$m{\ell}$l of rhBMP-2 for 48 hours, the excess solution of rhBMP-2 were removed. After that, they were lyophilized for 24 hours, and then the rhBMP-2 on the surface of titanium was resolved for 72 hours in PBS. All the extracted solution was analyzed by ELISA. One-way analysis of variance (ANOVA) was performed on the data. RESULTS: The wettability is improved by anodic oxidation. The best wettability was shown on the nano-micro group, and it was followed by nano group, micro group, and polished group. In the histological findings, all implants showed good healing and the new bone formation were observed along the implant surface. After 3 days, nano-micro group delivered the most amount of rhBMP-2, followed by nano group, micro group, and polished group. CONCLUSION: It indicated that anodic oxidation on blasting surface produce functionally graded nano-micro porous structure and enhance hydrophilicity of the surface and osseointegration. The findings suggest that the nano-micro porous structure could be a useful carrier of osteogenic molecules like rhBMP-2.

On the Design of LED Dimming Control System for Optical Zoom Lens (광학 줌렌즈를 위한 LED 조명 제어 시스템 설계)

  • Min, Jun Hong;Kim, Min Ho;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.65-70
    • /
    • 2014
  • This paper is to improve the problem of the LED dimming control system using the conventional PWM and DAC method. The conventional PWM method controls the average current to switch dimming signal. This method generates the flicker when controlling at a low current. In order to solve the problem, this system prevents the flicker with the DAC method. The LED is lit at micro-current flowing in the LED. And offset voltage is generated in the output of the DAC when the DAC output is very low voltage as 0V. This was resolved by the voltage drop of the output voltage to construct a negative offset circuit. In addition, the LED current can't flow as set values because of overheating of FET. In order to solve the problem, the 16 bits ADC in the microprocessor is a more accurate current control receives the LED current in comparison with the set value. Therefore, the LED dimming control system proposed in this paper showed the accurate and reliable more than conventional systems.

Numerical and theoretical modelling of low velocity impact on UHPC panels

  • Prem, Prabhat R.;Verma, Mohit;Ramachandra Murthy, A.;Rajasankar, J.;Bharatkumar, B.H.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.207-215
    • /
    • 2017
  • The paper presents the studies carried out on low velocity impact of Ultra high performance concrete (UHPC) panels of size $350{\times}350{\times}10mm^3$ and $350{\times}350{\times}15mm^3$. The panels are cast with 2 and 2.5% micro steel fibre and compared with UHPC without fiber. The panels are subjected to low velocity impact, by a drop-weight hemispherical impactor, at three different energy levels of 10, 15 and 20 J. The impact force obtained from the experiments are compared with numerically obtained results using finite element method, theoretically by energy balance approach and empirically by nonlinear multi-genetic programming. The predictions by these models are found to be in good coherence with the experimental results.