• Title/Summary/Keyword: Micro-channels

Search Result 199, Processing Time 0.023 seconds

Investigation into direct fabrication of nano-patterns using nano-stereolithography (NSL) process (나노 스테레오리소그래피 공정을 이용한 무(無)마스크 나노 패턴제작에 관한 연구)

  • Park Sang Hu;Lim Tae-Woo;Yang Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.156-162
    • /
    • 2006
  • Direct fabrication of nano patterns has been studied employing a nano-stereolithography (NSL) process. The needs of nano patterning techniques have been intensively increased for diverse applications for nano/micro-devices; micro-fluidic channels, micro-molds. and other novel micro-objects. For fabrication of high-aspect-ratio (HAR) patterns, a thick spin coating of SU-8 process is generally used in the conventional photolithography, however, additional processes such as pre- and post-baking processes and expansive precise photomasks are inevitably required. In this work, direct fabrication of HAR patterns with a high spatial resolution is tried employing two-photon polymerization in the NSL process. The precision and aspect ratio of patterns can be controlled using process parameters of laser power, exposure time, and numerical aperture of objective lens. It is also feasible to control the aspect ratio of patterns by truncation amounts of patterns, and a layer-by-layer piling up technique is attempted to achieve HAR patterns. Through the fabrication of several patterns using the NSL process, the possibility of effective patterning technique fer various N/MEMS applications has been demonstrated.

Evaluation of micro-channel characteristics of fused silica glass using powder blasting (Powder blasting을 이용한 Fused silica glass의 마이크로 채널 가공 및 특성 평가에 관한 연구)

  • Lee, Jung-Won;Kim, Tae-Min;Shin, Bong-Cheol
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.36-41
    • /
    • 2020
  • Recently, due to the development of MEMS technology, researches for the production of effective micro structures and shapes have been actively conducted. However, the process technology based on chemical etching has a number of problems such as environmental pollution and time problems due to multi-process. Various processes to cope with this process are being studied, and one of the mechanical etching processes is the powder blasting process. This process is a method of spraying fine particles, which has the advantage of being an effective process in manufacturing hard brittle materials. However, it is also a process that adversely affects the material surface roughness and material properties due to the impact of the injection of fine particles. In this study, after fabricating micro-channels in fused silica glass with excellent optical properties among the hard brittle materials, we used the nano indentation system to analyze the micro parts using nano-particles as well as machinability and surface roughness analysis of the processed surface. The analysis was performed for the effective processing of powder blasting.

Evaluation of Efficiency on Glass Precision Machining by using Abrasive Water-jet (연마재 워터젯 가공을 이용한 유리 미세 가공 성능 평가)

  • Bahk, Yeon-Kyoung;Park, Kang-Su;Kim, Hyung-Hoon;Shin, Bo-Sung;Ko, Jong-Soo;Go, Jeung-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.87-93
    • /
    • 2010
  • This paper presents an evaluation of efficiency on glass precision machining by using abrasive water-jet machine. In this study, problems of conventional water-jet machining are examined experimentally and are analysized numerically. Especially, the reason of whitening on the machined surface of biochip glass is determined. It is found that the mass flow rate of abrasive input and transverse speed of water-jet are key parameters to control the direct machining of micro hole and channel on a glass substrate. Based on results of experimental analysis, possibility of direct fabrication of micro holes and channels on a glass substrate is successfully confirmed.

A Channel Allocation Method on Cellular Systems with Multimedia Traffic (멀티미디어 환경하의 계층구조 이동통신 시스템에서의 채널할당방법)

  • Kim, Jeong-Kee;Hur, Sun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.51
    • /
    • pp.89-97
    • /
    • 1999
  • Recently, due to the rapid technological progress, CDMA cellular system is widely used for voice, data and multimedia services. But the analysis for voice-data integrated traffic has not been done satisfactorily. Moreover, there is few research results for voice-data integrated traffic. In this paper, we propose an effective channel allocation algorithm for CDMA cellular system which serves voice-data integrated traffic. As for the proposed channel allocation algorithm, new calls and hand-off calls first attempt to connect micro-cell. We model the channel allocating scheme as a Birth-and-Death process. We reserve a few hand-off dedicated channels and calculate the blocking probability of hand-off calls varying the number of hand-off dedicated channels. Then we decide the number of hand-off dedicated channels satisfying the proper QoS(Quality of Service) and minimum blocking probability.

  • PDF

A Study on Polycarbonate Microfabrication Using a Pneumatic Hot Press (공압 핫프레스를 이용한 마이크로 폴리카보네이트 성형에 관한 연구)

  • Yeo, Changyeong;Park, Taehyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.106-112
    • /
    • 2021
  • Thermoplastic microfluidic devices are used in BioMEMS for medical and biotechnology applications, such as gene extraction, DNA analysis, and virus detection. In this research, a simple fabrication protocol with a commercially available pneumatic hot press is proposed and demonstrated for polycarbonate microfluidic devices. Microfluidic channels with a width of 200 ㎛ and a height of 10 ㎛ were designed and machined onto a brass plate as a mold insert using a CNC milling machine. The resulting microfluidic channels on the mold insert were assessed and found to have an actual width of 198 ㎛ and a height of 10 ± 0.25 ㎛. The microfluidic channels were replicated on a polycarbonate sheet using the proposed replication technique at 146℃ for 20 minutes under a constant load of 2400 kgf. The devices were then naturally cooled to 100℃ while maintaining the same pressure. It was found that the microchannels were successfully replicated in the polycarbonate, with a width of 198 ㎛ and a height of 10.07 ㎛. The proposed replication technique thus offers the rapid mass production of high-quality microfluidic devices at a low cost with a process that, unlike conventional photolithography systems, does not require expensive equipment.

The Design and Implementation of a TV Tuner for the Digital Terrestrial Broadcasting

  • Chong, Young-Jun;Kim, Jae-Young;Lee, Il-Kyoo;Choi, Jae-Ick;Oh, Seung-Hyeub
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.2
    • /
    • pp.131-138
    • /
    • 2001
  • The DTV (Digital TV) tuner for an 8-VSB (Vestigial Side-Band) modulation was developed to meet the requirements of the ATSC (Advanced Television Systems Committee). The double frequency conversion and the active tracking filter in the front-end were used to cancel interferences between adjacent channels and multi-channels by suppressing the IF beat and the Image frequency. However, It was impossible to get frequency mapping between the tracking filter and the first VCO (Voltage Controlled Oscillator) in the existing DTV tuner structure which differs from the NTSC (National Television Systems Committee) tuner. This paper, therefore, suggests an assailable structure and a new method for the automatic frequency selection by mapping the frequency characteristics over the tracking voltage and the combined HW which is composed of a Micro-controller, an EEPROM (Electrically Erasable Programmable Read Only Memory), a DAC (Digital-to-Analog Converter), an OP amplifier, and a switch driver.

  • PDF

Forming of Metallic Bipolar Plates by Dynamic Loading (Dynamic Load를 이용한 박막 금속 분리판 성형기술)

  • Koo, J.Y.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.5-12
    • /
    • 2012
  • The weight of the bipolar plate is one of the crucial aspects of improving power density in PEMFC stacks. Aluminum alloys have good mechanical properties such as density, electrical resistivity, and thermal conductivity. Furthermore, using aluminum in a bipolar plate instead of graphite reduces the bipolar plate cost and makes machining easier. Therefore in this study, an aluminum alloy was selected as the appropriate material for a bipolar plate. Results from feasibility experiments with the aim of developing fuel cells consisting of Al bipolar plates with multiple channels are presented. Dynamic loading was applied and the formability of micro channels was estimated as a function of punch pressure and die radius. Sheets of Al5052 with a thickness of 0.3mm were used. For a die radius of 0.1mm the formability was optimized with a sine wave dynamic load of 90kN at maximum pressure and 5 cycles of a sine wave punch travel. The experimental results demonstrate the feasibility of the proposed manufacturing technique for producing bipolar plates.

Flow regime transition criteria for vertical downward two-phase flow in rectangular channel

  • Chalgeri, Vikrant Siddharudh;Jeong, Ji Hwan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.546-553
    • /
    • 2022
  • Narrow rectangular channels are employed in nuclear research reactors that use plate-type nuclear fuels, high heat-flux compact heat exchangers, and high-performance micro-electronics cooling systems. Two-phase flow in narrow rectangular channels is important, and it needs to be better understood because it is considerably different than that in round tubes. In this study, mechanistic models were developed for the flow regime transition criteria for various flow regimes in co-current air-water two-phase flow for vertical downward flow inside a narrow rectangular channel. The newly developed criteria were compared to a flow regime map of downward air-water two-phase flow inside a narrow rectangular channel with a 2.35-mm gap width under ambient temperature and pressure conditions. Overall, the proposed model showed good agreement with the experimental data.

Friction Factor in Micro Channel Flow with Electrochemical Reactions in Fuel Cell (전기화학반응을 수반한 유로채널 형상에 따른 마찰계수에 대한 연구)

  • Cho, Son-Ah;Lee, Pil-Hyong;Han, Sang-Seok;Choi, Seong-Hun;Hwang, Sang-Soon
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.245-251
    • /
    • 2007
  • The performance of fuel cell is enhanced with increasing reaction surface. Narrow flow channels in flow plate cause increased pumping power. Therefore it is very important to consider the pressure drops in the flow channel of fuel cell. Previous research for pressure drop for micro channel of fuel cell was focused on effects of various configuration of flow channel without electrochemical reaction. It is very important to know pressure loss of micro flow channel with electrochemical reaction because fluid density in micro channel is changed due to chemical reaction. In this paper, it is investigated that the pressure drops in micro channel of various geometries at anode and cathode with electrochemical reaction and compared them to friction coefficient (fRe), velocity, pressure losses for corresponding non reacting flow channel. The results show that friction factors for cold flow channel could be used for parallel and bended flow channel for flow channel design of fuel cell. In the other hand, pressure drop for serpentine flow channel is the lowest among flow channels due to bypass flow across gas diffusion layer under reacting flow condition although its pressure drop is highest for cold flow condition.

Changes of Blood pH in Micro-circulation System on the Stimulated Time of Pulsed Magnetic Fields (펄스자기장 자극 시간에 따른 미세순환시스템 내에서 혈액의 pH변화)

  • Lee, Boram;Choi, Yukyung;Lee, Hyunsook
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.214-218
    • /
    • 2022
  • The purpose of this study was to investigate the role of the PMF in the treatment of acidosis and inflammation by monitoring the pH change for the continuity of PMF effect on the blood in the micro-circulation system that mimics the capillaries in the human body. Micro-tubes and micro-channels similar in diameter to those of arteries and arterioles were fabricated using PDMS and connected to a micro-pump for blood circulation. The continuity of PMF effect was verified in a micro-circulation system in-vitro. The pH changes for the circulating blood and for persistence time of PMF stimulus effect were confirmed using the optimized PMF conditions based on the previous studies. Also pH changes were observed by continuously stimulating PMF for a set period of time. The result was observed that the pH of the blood acidified using tBHP continued to rise from immediately after stimulation of PMF to 70 minutes of stimulation, reaching a normal pH range, and then decreasing. Our study showed that PMF has a positive effect on the control of blood pH homeostasis, so it is suggested the possibility of being used as a noninvasive treatment for acidosis treatment and anti- inflammatory treatment.