• Title/Summary/Keyword: Micro-channel Flow

Search Result 221, Processing Time 0.033 seconds

Flow Characteristics of Gaseous Leak flows in Narrow Cracks

  • Hong, Chung-Pyo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.4
    • /
    • pp.14-21
    • /
    • 2008
  • The prediction for gaseous leak flows through a narrow crack is important for a leak-before-break (LBB) analysis. Therefore, the methodology to obtain the flow characteristics of gaseous leak flow in a narrow crack for the wide range by using the product of friction factor and Reynolds number correlations (fRe) for a micro-channel is developed and presented. The correlation applied here was proposed by the previous study. The fourth-order Runge-Kutta method was employed to integrate the nonlinear ordinary differential equation for the pressure and the regular-Falsi method was also employed to find the inlet Mach number. A narrow crack whose opening displacement ranges from 10 to $100{\mu}m$ with a crack length in the range from 2 to 200mm was chosen for sample prediction. The present results are compared with both numerical simulation results and available experimental measurements. The results are in excellent agreement with them. The leak flow rate can be approximately predicted by using proposed methodology.

An Experimental Study on Heat Transfer Characteristics and Pressure Drop in Micro Plated Heat Exchangers with S-shape of Microchannel (S 형상의 마이크로 채널을 가진 마이크로 판형 열교환기의 열전달 특성 및 압력강하에 관한 실험적 연구)

  • Seo, Jang-Won;Kim, Yoon-Ho;Moon, Chung-Eun;Lee, Kyu-Jung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1876-1881
    • /
    • 2007
  • The micro plated heat exchangers were designed to transfer more heat/volume or mass than previous heat exchangers within the context of the design constraints specified. The increase of the surface-to-volume ratio results in an increase of the interfacial area. This enhances considerably the performance of a heat exchanger. This can be an important component in a wide range of applications fuel cell, aerospace, automotive, electronic system and home heating, etc). In this study, the performance evaluation of micro plated heat exchangers under the counter flows with straight and S-shaped channel are carried out. The pressure drop as well as inlet and outlet fluid temperature were measured at steady state under various operating conditions and the total heat transfer rate were also calculated.

  • PDF

Flow Characteristics in the Converging Mini-Channels (좁아지는 유로에서의 유동 특성)

  • Karng, Sarng-Woo;Kim, Jin-Ho;Lee, Yoon-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1623-1628
    • /
    • 2004
  • Recently mini-channels or micro-channels are widely used for cooling the high density power electronic devices. Especially, the channels are used in small and high efficient equipments such as heat pipes and heat exchangers. Interfacial velocities between liquid and gas phases are very important in mini or micro-channels. In this paper, an experiment and a numerical analysis on the interfacial velocities were performed. In the experiment, the interfacial velocities which were measured by the high-speed CCD camera were about $26{\sim}33$ cm/s and the velocities increased as the inclination angle did. In the numerical experiment, CFD-ACE+, a commercial program, was used, the velocities had similar values with experimental results. As the inclination angle and the contact angle increased, the interfacial velocities did because of the surface tension which causes to move the interface. The effect of inclination angle was larger in the converging channels than in straight channels.

  • PDF

Thermal Mixing in a Microchannel (마이크로 채널에서의 열혼합 특성)

  • Park, Kyoung-Bae;Ahn, Joon;Kim, Byoung-Joon;Lee, Joon-Sik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.585-588
    • /
    • 2008
  • Thermal mixing phenomena in a Y-type microchannel were investigated using a micro-PIV. Two inlet reservoirs of the microchannel were controlled individually so that the characteristics of thermal mixing in the channel with temperature difference were compared with those without the difference. The velocity field in the mixing process was measured using the micro-PIV system that includes an ICCD (Intensified CCD) camera. The mixing area and uniformity were also analyzed. It is observed that the flow fluctuation in spanwise direction is induced by temperature difference, which enhances mixing process in microchannels.

  • PDF

Study on Heat Transfer and Pressure Drop Characteristics of Internal Heat Exchanger for $CO_2$ Heat Pump under Cooling Condition ($CO_2$ 열펌프용 내부 열교환기의 냉방조건에서 열전달 및 압력 강하 특성에 대한 연구)

  • Kim, Dae-Hoon;Lee, Sang-Jae;Choi, Jun-Young;Lee, Jae-Heon;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.8
    • /
    • pp.517-525
    • /
    • 2008
  • In order to study the heat transfer and pressure drop of an internal heat exchanger for $CO_2$ heat pump under cooling condition, the experiment and numerical analysis were performed. Four kinds of internal heat exchangers with a coaxial tube type and a micro-channel tube type were used. The experimental apparatus consisted of a test section, a power supply, a heater, a chiller, a mass flow meter, a pump and a measurement system. The section-by-section method and Hardy-Cross method were used for the numerical analysis. The effects of the internal heat exchanger refrigerant flow rate, the length of the internal heat exchanger, the operating condition of the gas-cooler, the evaporator and the type of the internal heat exchangers were investigated. With increasing of the flow rate, the heat transfer rate increased about 25%. The heat transfer rate of the micro-channel tube type was higher about 100% than that of the coaxial tube type. With increasing of the length of the internal heat exchanger, the heat transfer rate increased about $20{\sim}50%$. The pressure drop of the low-side tube was larger compared with that of the high-side tube.

Predictions of Microscale Separated Flow using Langmuir Slip Boundary Condition (Langmuir 미끄럼 경계조건을 이용한 미소 박리유동의 예측)

  • Lee, Do-Hyung;Meang, Joo-Sung;Choi, Hyung-Il;Na, Wook-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1097-1104
    • /
    • 2003
  • The current study analyzes Langmuir slip boundary condition theoretically and it is tested in practical numerical analysis for separation-associated flow. Slip phenomenon at the channel wall is properly implemented by various numerical slip boundary conditions including Langmuir slip model. Compressible backward-facing step flow is compared to other analysis results with the purpose of diatomic gas Langmuir slip model validation. The numerical solutions of pressure and velocity distributions where separation occurs are in good agreement with other numerical results. Numerical analysis is conducted for Reynolds number from 10 to 60 for a prediction of separation at T-shaped micro manifold. Reattachment length of flows shows nonlinear distribution at the wall of side branch. The Langmuir slip model predicts fairly the physics in terms of slip effect and separation.

A Numerical Study on Electro-osmotic Flow and Stirring Characteristics in a Microchannel with Local Adjustment of Electric Potential (마이크로 채널 내 국소적 전위 인가에 따른 전기삼투 유동 및 혼합 특성에 대한 수치해석적 연구)

  • Suh Yong-Kweon;Heo Hyeng-Seok
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.1
    • /
    • pp.31-40
    • /
    • 2006
  • In this study a newly designed electro-osmotic micro-mixer is proposed. This study is composed of a channel and metal electrodes attached locally on the side wall surface ultimately to control the mixing effect. To obtain the flow patterns, numerical computation was performed by using a commercial code, CFD-ACE. The fluid-flow solutions are the cast into studying the characteristics of stirring in terms of the mixing index. It was shown that the local control of the electric potential can indeed contribute to the enhancement of mixing effect.

  • PDF

Simultaneous mixing and pumping using asymmetric microelectrodes (비대칭 미세전극을 이용한 동시 혼합 및 펌핑)

  • Kim, Byoung-Jae;Yoon, Sang-Youl;Lee, Kyung-Heon;Sung, Hyung-Jin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.77-83
    • /
    • 2007
  • This paper presents numerical and experimental works for simultaneous pumping and mixing small liquid using asymmetric microelectrode arrays, based on AC electroosmotic flows. To this end, four arrangements of electrode pairs were considered with diagonal/herringbone shapes. Numerical simulations were made of three-dimensional geometries by using the linear theory. The results indicated that the helical flow motions induced by the electrode arrays play a significant role in the mixing enhancement. The pumping performance was influenced by the slip velocity at the center region of the channel compared to that near the side walls. To validate the numerical predictions, the microfluidic devices were made through MEMS. The flow rate was obtained by using micro PIV, increasing the applied frequency. The electrolyte was potassium chloride solution. The flow patterns above electrodes were visualized to see lateral flow for mixing. The experimental results showed good agreements with the numerical predictions.

  • PDF

Turbulence Generation by Ultrasonically Induced Gaseous Cavitation in the $CO_2$Saturated Water Flow

  • Lee, Seung-Youp;Park, Young-Don
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1203-1210
    • /
    • 2003
  • Emission of ultrasonic vibration to turbulent flow promotes the turbulence generation due to the resonantly oscillating pressure field and thereby induced cavitation. In addition, ultrasonic vibration is well transmitted through water and not dissipated easily so that the micro-bubbles involved in the fluid induce the gaseous cavitation if the bubbles are resonated with the ultrasonic field. In the present study, we found through LDV measurement that the gaseous cavitation induced by ultrasonic vibration to CO$_2$saturated water flow in the rectangular cross-sectioned straight duct enhances turbulence much more than the case of non-ultrasonic or normal ultrasonic conditions without gaseous cavitation. We also found that the fluctuating velocity component induced by emitting the ultrasonic vibration in normal direction of a rectangular channel flow can be redistributed to stream-wise component by the agitation of gaseous cavitation.