• Title/Summary/Keyword: Micro-burr

Search Result 103, Processing Time 0.024 seconds

Technology of Micro Deburring Using the Ultrasonic Vibration (초음파 진동을 이용한 미세 버 제거기술)

  • 최헌종;이석우;강은구;최영재;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.250-253
    • /
    • 2002
  • The operation of surface and edge finishing is the last and essential process of parts machining, because a product is completed as an assembly. Therefore, the quality of the finished parts has a direct effect upon the performance of the product. Especially, the edge quality depending on the burr control process is very important. A number of deburring processes have been developed for macro burrs such as barreling, brushing, chemical methods, etc. However, micro burr removal when piercing a very thin plate is very difficult, because this badly deteriorates the surface quality of the processed part. When ultrasonic wave is propagated in liquids, it forms an infinitude of micro bubbles. These bubbles generate extremely strong force, which removes micro burrs. In ultrasonic micro deburring, the problem is that burrs are not removed completely, because only components of the explosive force directly act on the burrs, which is not enough. An attempt was made to remove the burrs using ultrasonic vibration in water with SiC as an abrasive agent. Because of the abrasive, smoother edges have been achieved. There are many control parameters in ultrasonic deburring such as abrasive size, ultrasonic frequency and amplitude, distance between tool and workpiece, tilt angle of workpiece etc. This study focuses on how distance and tilt angle influence deburring effect. A number of experiments for these parameters have been carried out, and then the effect of each parameter analyzed.

  • PDF

A Study on the Machining Characteristics for Micro Barrier Ribs by using Micro Endmilling (마이크로 엔드밀에 의한 미세격벽가공의 가공특성에 관한 연구)

  • 민승기;이선우;이동주;이응숙;제태진;최두선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.26-31
    • /
    • 2001
  • Recently, miniaturization and mass production are the main trends in manufacturing fields. Therefore, ultraprecision machining and MEMS technology have been taken more and more important position in machining of microparts. Micro endmilling is one of the prominent technology that has wide spectrum of application field ranging from macro parts to micro products, such as PDP and IT components, in precision products manufacturing. However, the deburring is significant problem in making smooth and precise parts in micro endmilling. This paper shows removal characteristics of burr generated by micro endmilling process. Additionally, it is necessary to understand the formation mechanism of burr of micro barrier ribs to find proper deburring method.

  • PDF

A Study on the Characteristics of Micro Deep Hole Machining in Micro Drilling Machine (마이크로 드릴링 M/C에 의한 미세구멍가공특성에 관한 연구)

  • 민승기;이동주;이응숙;강재훈;김동우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.275-280
    • /
    • 2001
  • Recently, the trends of industrial products grow more miniaturization, variety and mass production. Micro drilling which take high precision in cutting work is requested more micro hole and high speed working. Especially, Micro deep hole drilling is becoming more important in a wide spectrum of precision production industries, ranging from the production of automotive fuel injection nozzle, watch and camera parts, medical needles, and thick multi-layered Printed Circuit Boards(PCB) that are demanded for very high density electric circuitry. This paper shows the tool monitoring results of micro drill with tool dynamometer. And additionally, microscope with built-in monitor inspection show the relationship between burr in workpiece and chip form of micro drill machining.

  • PDF

Micro Forming with Hydrostatic Pressure -Hydro-Mechanical Role Punching- (정수압을 이용한 미세 성형 -Hydro-Mechanical Hole Punching-)

  • 박훈재;김승수;최태훈;김응주;나경환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.386-390
    • /
    • 2003
  • As a trial of application of hydrostatic pressure in micro fomring, burr-free punching has been conducted by means of hydro-mechanical procedure. Even though it is in beginning stage, result of the hydro-mechanical punching is promising. Hydrostatic pressure helps delay fracture initiation and makes it possible to get clean shearing surface. Without any burr on both side of sheet, smooth holes are archived as intended. To verify the significance of hydro-mechanical punching, conventional punching is performed under similar conditions and relatively larger portion of fracture surface is detected in the punching hole. Despite the quality of sidewall is not good enough, it might be possible to make the hole shaped upright, reduce the roll-over radius and minimize the fracture surface by optimizing process parameters.

  • PDF

A Study on Micro Hole Punching with Soft Die Plate (소프트 다이 플레이트를 이용한 미세 구멍 펀칭 연구)

  • Yoo J. H.;Joo B. Y.;Jeon B. H.;Oh S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.260-265
    • /
    • 2002
  • In micro hole punching process, it is very difficult to align punch with die hole. Misalignment can cause a falling-on in hole quality and breakage of punch and die. Micro punching using soft die plate without a die hole has a big advantage because it is not necessary to align punch with die hole and to consider die clearance. Soft die plates are made by polymers or hard rubbers which are softer than metals. In this study, several micro punching experiments are conducted. Micro punching test with some materials shows that micro hole punching is feasible with some soft die plates. Through the section shape obtained by mounting and polishing, the punched hole quality is measured and the shapes of burr and dome we studied.

  • PDF

Tool Alignment and Machining Accuracy in Micro End Milling (마이크로 머시닝에서의 공구 정렬과 가공정밀도)

  • An, Ju Eun;Lee, Sung Ho;Kwak, Jae Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.2
    • /
    • pp.143-148
    • /
    • 2016
  • A micro end mill is one of the precise tools used in machining ultra-precision products such as microchannel and micropatterned mold. To achieve the required precision of these products, several studies investigated the cutting force, burr formation, and burr generation mechanism of micro end mills; however, there are few studies on the alignment of micro tools, which is the foundation of machining. Hence, in this investigation, relation expressions were derived to determine the relation between the misalignment parameters and the machining accuracy. At the same time, the effect of the machining parameters was analyzed using a multiple linear regression analysis and the analysis of variance. The results indicate that the tilting angle of a micro tool has more influence on the machining accuracy than other parameters.

A study of burr formation on microgrooving for fresnel lens mould (프레넬렌즈 금형용 미세홈 가공에 있어서 버 발생 경향에 관한 연구)

  • 임한석;안중환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.28-34
    • /
    • 1997
  • The side burrs and shape distortion resulting from the micromachining of an array of V-shape microgrooves in fresnel lens mould were experimentally invesigated. The focus of this study is on the influence of depth of cut and prism angle on the burr growing rate. The main experiments were con- ducted on the single prism cutting for the convinient of measuring the burr shape and cutting force. From the observation of the burr shape and burr growing rate, it was found that there exits a critical depth of cut below which the burrs are more or less irregular and weak. But above that critical value, the burrs are re- latively clear and stiff.

  • PDF

Micro Drilling using 2-directional Vibration in a Plane (양방향 평면진동을 이용한 미세구멍가공)

  • Kim, Gi Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.4
    • /
    • pp.38-43
    • /
    • 2010
  • By generating 2-directional vibration in a xy plane of workpiece table, a newly developed micro drilling using 2-directional vibration was carried out. The vibration was produced by applying sinusoidal voltages to the orthogonally arranged piezoelectric materials built in the workpiece excitation table. Through the micro-drilling experiments using poly-carbonate and brass material, it was found that micro drilling using 2-directional vibration in a workpiece table could be an efficient method to enhance the form accuracy of machined workpiece by suppressing burr formation at both entry and exit region. A higher form accuracy could be obtained by increasing stiffness of feeding mechanism, decrease of geometric tolerance of combining jig, and development of high performance excitation table which generates amplified vibration at higher frequency.

Fabrication of LGP Micro-Channels by Micro End-Milling and MR Fluid Jet Polishing (Micro End-Milling과 MR Fluid Jet Polishing을 이용한 도광판 마이크로 채널 제작)

  • Lee, J.W.;Ha, S.J.;Hong, K.P.;Cho, M.W.;Kim, G.H.;Yoon, G.S.;Je, T.J.
    • Transactions of Materials Processing
    • /
    • v.22 no.2
    • /
    • pp.80-85
    • /
    • 2013
  • The surface integrity of micro-machined products affects the performance of products significantly. Micro-burrs resulting from micro-cutting degrades the surface quality. Therefore it is desired to eliminate them completely and many studies have been undertaken for this purpose. In this study, micro-end-milling was carried out on nickel alloy and brass materials commercially used for light guide plate mold in 3-D optical devices. After completing this micro-machining, the burr heights were measured with a microscope. Then, deburring was done on the machined edges using the MR jet polishing method. A jet angle of $0^{\circ}$ and deburring times of 1, 3, and 5 min. were chosen. It was found that burrs were completely eliminated after 5 min of MR fluid jet polishing.