• Title/Summary/Keyword: Micro-angle sensor

Search Result 40, Processing Time 0.025 seconds

Interfacial Evaluation and Hydrophobicity of Multifunctional Hybrid Nanocomposites for Self-sensing and Actuation (자체 감지능 및 작동기용 다기능 하이브리드 나노복합재료의 계면 특성 및 소수성 표면 연구)

  • Wang, Zuo-Jia;GnidaKouong, Joel;Jang, Jung-Hoon;Kim, Myung-Soo;Park, Joung-Man
    • Composites Research
    • /
    • v.23 no.2
    • /
    • pp.24-30
    • /
    • 2010
  • Interfacial evaluation and hydrophobicity of Ni-nanopowder/epoxy composites were investigated for self-sensing and actuation. Contact resistance and resistivity were measured using gradient micro-specimens. The actuation of the composites in the electromagnetic field was studied with three wave functions, i.e., sine, triangle and square functions. Due tothe presence of hydrophobic domains on the heterogeneous surface, the static contact angle of Ni-nanopowder/epoxy nanocomposite wasabout $100^{\circ}$, which was rather lower than that for super-hydrophobicity. The dynamic contact angle showed the similar trend of static contact angle. Ni-nanopowder/epoxy composite was responded wellfor both self-sensing and actuation in electromagnetic field due to the intrinsic metal property of Ni-nanopowder. Displacement of the actuator of Ni-nanopowder/epoxy composite was evaluated to obtain the maximum and the optimum performance using laser displacement sensor as functions of the wave type, frequency, and voltage. Actuation of Ni-nanopowder/epoxy composites also increased as functions of applied frequency and voltage. Actuated strain increased more rapidly at sine wave with increasing voltage compared to those of triangle or rectangular waves.

Development of an Inexpensive Black Box with Transmission of SOS and Theft Signal for an Agricultural Tractor (도난방지 및 구조신호 전송기능이 있는 저가형 농용트랙터 블랙박스 개발)

  • Kim, YuYong;Shin, Seung-Yeoub;Kim, Byounggap;Kim, Hyung Kweon;Cho, Yongho;Kim, Jinoh
    • Journal of Biosystems Engineering
    • /
    • v.37 no.6
    • /
    • pp.352-358
    • /
    • 2012
  • Purpose: The inexpensive black box system was developed to acquire and save driving information, to give the slope information, and to transmit SOS and theft signal. Method: The device consists of a main micro controller to acquire and save data, a GPS sensor module, a CDMA module, a touch LCD module, a RF (Radio Frequency) ID module, a SD (Secure Digital) card module, an emergency electric power source, a theftproof circuit, and a sensing device. The sensing device consists of a 8 bit micro controller, a accelerometer to detect impulse, two slope sensors to detect roll and pitch angle and a circuit to detect operation of 6 lighting devices. Results: Test results are as follows: 1) a tractor can be start up only with an electronic key (password or RFID card), 2) theft signal was transmitted when a tractor moved without an electronic key, 3) SOS was transmitted at conditions that rollover or crash happened. 4) 5 more than per 1s data are recorded at 5 minute intervals as new file name in SD card. Conclusions: This system can be used to save travelling record, reduce accident, prevent theft and rescue life in the accidents.

An Ultra-precision Electronic Clinometer for Measurement of Small Inclination Angles

  • Tan, Siew-Leng;Kataoka, Satoshi;Ishikawa, Tatsuya;Ito, So;Shimizu, Yuuki;Chen, Yuanliu;Gao, Wei;Nakagawa, Satoshi
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.539-546
    • /
    • 2014
  • This paper describes an ultra-precision electronic clinometer, which is based on the capacitive-based fluid type, for detection of small inclination angles. The main parts of the clinometer low-noise electronics are two capacitance measurement circuits for converting the capacitances of the capacitors of the clinometer into voltages, and a differential amplifier for obtaining the difference of the capacitances, which is proportional to the input inclination angle. A 16 bit analog to digital (AD) converter is also embedded into the same circuit board, whose output is sent to a PC via RS-232C, for achieving a small noise level down to tens of ${\mu}v$. A compensation method, which is referred to as the delay time method for shortening the stabilization time of the sensor was also discussed. Experimental results have shown the possibility of achieving a measurement resolution of $0.0001^{\circ}$ as well as the quick measurement with the delay time method.

Development of Control System for Anti-Rolling Tank of Ships with Fault Detection Capability (고장진단 기능을 갖는 선박 횡동요 감요 장치 용 제어시스템 개발)

  • Won, Moon-Cheol;Ryu, Sang-Hyun;Choi, Kwang-Sik;Jung, Yun-Ho;Lew, Jae-Moon;Ji, Yong-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.64-71
    • /
    • 2010
  • This paper summarizes the development of an ART control system panel with a touch screen and sensors to measure the roll and roll rate of ships. The control system hardware consists of two micro-processors, analog and digital I/O circuits, various relay circuits, etc. Sensor fusion and moving cross algorithms are implemented to accurately estimate the roll angle and roll period. In addition, the control system adopts a fault detection algorithm to inform users of ART system faults. A touch screen in the control panel can display the ART system states and faults. The performance of the developed system was verified on real sea trials.

Active neuro-adaptive vibration suppression of a smart beam

  • Akin, Onur;Sahin, Melin
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.657-668
    • /
    • 2017
  • In this research, an active vibration suppression of a smart beam having piezoelectric sensor and actuators is investigated by designing separate controllers comprising a linear quadratic regulator and a neural network. Firstly, design of a smart beam which consists of a cantilever aluminum beam with surface bonded piezoelectric patches and a designed mechanism having a micro servomotor with a mass attached arm for obtaining variations in the frequency response function are presented. Secondly, the frequency response functions of the smart beam are investigated experimentally by using different piezoelectric patch combinations and the analytical models of the smart beam around its first resonance frequency region for various servomotor arm angle configurations are obtained. Then, a linear quadratic regulator controller is designed and used to simulate the suppression of free and forced vibrations which are performed both in time and frequency domain. In parallel to simulations, experiments are conducted to observe the closed loop behavior of the smart beam and the results are compared as well. Finally, active vibration suppression of the smart beam is investigated by using a linear controller with a neural network based adaptive element which is designed for the purpose of overcoming the undesired consequences due to variations in the real system.

Basic Physiological Research on the Wing Flapping of the Sweet Potato Hawkmoth Using Multimedia

  • Nakajima, Isao;Yagi, Yukako
    • Journal of Multimedia Information System
    • /
    • v.7 no.2
    • /
    • pp.189-196
    • /
    • 2020
  • We have developed a device for recording biological data by inserting three electrodes and a needle with an angular velocity sensor into the moth for the purpose of measuring the electromyogram of the flapping and the corresponding lift force. With this measurement, it is possible to evaluate the moth-physiological function of moths, and the amount of pesticides that insects are exposed to (currently LD50-based standards), especially the amount of chronic low-concentration exposure, can be reduced the dose. We measured and recorded 2-channel electromyography (EMG) and angular velocity corresponding to pitch angle (pitch-like angle) associated with wing flapping for 100 sweet potato hawkmoths (50 females and 50 males) with the animals suspended and constrained in air. Overall, the angular velocity and amplitude of EMG signals demonstrated high correlation, with a correlation coefficient of R = 0.792. In contrast, the results of analysis performed on the peak-to-peak (PP) EMG intervals, which correspond to the RR intervals of ECG signals, indicated a correlation between ΔF fluctuation and angular velocity of R = 0.379. Thus, the accuracy of the regression curve was relatively poor. Using a DC amplification circuit without capacitive coupling as the EMG amplification circuit, we confirmed that the baseline changes at the gear change point of wing flapping. The following formula gives the lift provided by the wing: angular velocity × thoracic weight - air resistance - (eddy resistance due to turbulence). In future studies, we plan to attach a micro radio transmitter to the moths to gather data on potential energy, kinetic energy, and displacement during free flight for analysis. Such physiological functional evaluations of moths may alleviate damage to insect health due to repeated exposure to multiple agrochemicals and may lead to significant changes in the toxicity standards, which are currently based on LD50 values.

Establishment of Sewage Collection Measure and Charging Automation System (분뇨수거량 계량 및 청소요금시스템)

  • Hong, Dae-Seung;Lee, Jang-Hun;Kang, Sun-Hong;Yim, Hwa-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.487-492
    • /
    • 2010
  • In this study, our system that the volume of collected human waste in the septic tank truck is measured accurately and the fee of disposing human waste can be calculated by using measured results has been developed. The level sensor and its circuits which can measure the height of the tank, the hand-held system that can be used by workers easily and simply with micro-controller have been developed. Also, this system has been built in the receipt printing function to charge for disposal fee. Even when working on a sloping field, this system can measure the accurate collected volume of human waste in the tank using the X-Y axis angle sensor. The results of this study expect that the popular complaints that generated from human waste can be reduced, the exportation possibility of our specialized systems can acquire foreign currency.

Design and Fabrication of 4-beam Silicon-Micro Piezoresistive Accelerometer for TPMS Application (TPMS용 4빔 실리콘 미세 압저항형 가속도센서의 설계 및 제작)

  • Park, Ki-Woong;Kim, Hyeon-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.2
    • /
    • pp.1-8
    • /
    • 2012
  • This paper presents the accelerometer which is a key component of TPMS(Tire Pressure Monitoring System). Generally a piezoresistive accelerometer has characteristics of lower cost, better linearity and better immunity about the environmnet noise than a capacitive one. Three types of piezoresistive accelerometers are degined and simulated using ANSYS program. The best one is a piezoresistive sensor which is supported by four beams located at the center of the edge of the mass after comparing the characteristics of resonant frequency of the three types. Considering the sensor size and a simulated maximum stress and maximum displacement, the length of beams is set as $200{\mu}m$. The size of a piezoresistive accelerometer is $3.0mm{\times}3.0mm{\times}0.4mm$. The sensor output is characterized by measuring the output characteristic depending on angle. As a result the offset voltage of the accelerometer is 43.2 mV and its sensitivity is $42.5{\mu}V/V/g$. The temperature bias drift is measured. The shock durability of the sensor is 1500g and the measuring range is 0 ~ 60 g.

Polarization Precession Effects for Shear Elastic Waves in Rotated Solids

  • Sarapuloff, Sergii A.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.842-848
    • /
    • 2013
  • Developments of Solid-State Gyroscopy during last decades are impressive and were based on thin-walled shell resonators like HRG or CRG made from fused quartz or leuko-sapphire. However, a number of design choices for inertial-grade gyroscopes, which can be used for high-g applications and for mass- or middle-scale production, is still very limited. So, considerations of fundamental physical effects in solids that can be used for development of a miniature, completely solid-state, and lower-cost sensor look urgent. There is a variety of different types of bulk acoustic (elastic) waves (BAW) in anisotropic solids. Shear waves with different variants of their polarization have to be studied especially carefully, because shear sounds in glasses and crystals are sensitive to a turn of the solid as a whole, and, so, they can be used for development of gyroscopic sensors. For an isotropic medium (for a glass or a fine polycrystalline body), classic Lame's theorem (so-called, a general solution of Elasticity Theory or Green-Lame's representation) has been modified for enough general case: an elastic medium rotated about an arbitrary set of axes. Travelling, standing, and mixed shear waves propagating in an infinite isotopic medium (or between a pair of parallel reflecting surfaces) have been considered too. An analogy with classic Foucault's pendulum has been underlined for the effect of a turn of a polarizational plane (i.e., an integration effect for an input angular rate) due to a medium's turn about the axis of the wave propagation. These cases demonstrate a whole-angle regime of gyroscopic operation. Single-crystals are anisotropic media, and, therefore, to reflect influence of the crystal's rotation, classic Christoffel-Green's tensors have been modified. Cases of acoustic axes corresponding to equal velocities for a pair of the pure-transverse (shear) waves have of an evident applied interest. For such a special direction in a crystal, different polarizations of waves are possible, and the gyroscopic effect of "polarizational precession" can be observed like for a glass. Naturally, formation of a wave pattern in a massive elastic body is much more complex due to reflections from its boundaries. Some of these complexities can be eliminated. However, a non-homogeneity has a fundamental nature for any amorphous medium due to its thermodynamically-unstable micro-structure, having fluctuations of the rapidly-frozen liquid. For single-crystalline structures, blockness (walls of dislocations) plays a similar role. Physical nature and kinematic particularities of several typical "drifts" in polarizational BAW gyros (P-BAW) have been considered briefly too. They include irregular precessions ("polarizational beats") due to: non-homogeneity of mass density and elastic moduli, dissymmetry of intrinsic losses, and an angular mismatch between propagation and acoustic axes.

  • PDF

Cell Patterning on Various Substrates Using Polyelectrolyte Multilayer and Microstructure of Poly(Ethylene Glycol) (다양한 기판 위에서 고분자 전해질 다층 막과 폴리에틸렌글리콜 미세 구조물을 이용한 세포 패터닝 방법)

  • Shim, Hyun-Woo;Lee, Ji-Hye;Choi, Ho-Suk;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1100-1106
    • /
    • 2008
  • In this study, we presented rapid and simple fabrication method of functionalized surface on various substrates as a universal platform for the selective immobilization of cells. The functionalized surface was achieved by using deposition of polyelectrolyte such as poly(allyamine hydrochloride) (PAH), poly(diallyldimethyl ammonium chloride) (PDAC), poly(4-ammonium styrene sulfonic acid) (PSS), poly(acrylic acid) (PAA) and fabrication of poly(ethylene glycol) (PEG) microstructure through micro-molding in capillaries (MIMIC) technique on each glass, poly(methyl methacrylate) (PMMA), polystyrene (PS) and poly(dimethyl siloxane) (PDMS) substrate. The polyelectrolyte multilayer provides adhesion force via strong electrostatic attraction between cell and surface. On the other hand, PEG microstructures also lead to prevent non-specific binding of cells because of physical and biological barrier. The characteristic of each modified surface was examined by using static contact angle measurement. The modified surface onto several substrates provides appropriate environment for cellular adhesion, which is essential technology for cell patterning with high yield and viability in the micropatterning technology. The proposed method is reproducible, convenient and rapid. In addition, the fabrication process is environmentally friendly process due to the no use of harsh solvent. It can be applied to the fabrication of biological sensor, biomolecules patterning, microelectronics devices, screening system, and study of cell-surface interaction.