• Title/Summary/Keyword: Micro-Turbine

Search Result 285, Processing Time 0.024 seconds

Measurement of Micro Gas Turbine Power Pack Performance for Electric Vehicle Range Extenders Under Various Electrical Loads and Gear Ratios (전기자동차 레인지익스텐더를 위한 초소형 가스터빈 파워팩의 전기 부하 및 동력전달 기어비에 따른 성능 실험)

  • Sim, Kyuho;Park, Jisu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.371-378
    • /
    • 2015
  • Range extenders, which are power generation systems driven by small engines, extend the driving distance and time of electric vehicles (EVs) through continuous charging of batteries. The currently used range extenders with gasoline engines pose limitations with regard to the realization of high-power compact systems, owing to their complex structure and low energy density. In contrast, micro gas turbine (MGT) range extenders (MGT power packs) possess high power and low weight, and can therefore be significantly reduced in size despite increase in speed. In this study, an MGT power pack for the range extenders of EVs was developed using a turbo-prop micro turbine, an alternator for passenger vehicles and electric batteries. The operating characteristics of the MGT power pack were measured through a series of experiments conducted under electrical no-load and load conditions. Their power generation performance and efficiency were measured under various electrical loads and power transmission gear ratios. From the results, electrical load was found to have no influence on power generation performance. The maximum electrical power output was 0.8 kW at a core turbine speed of 150 krpm, and the application of 3:1 reduction gear to the turbine output shaft increased the power to 1.5 kW by 88%. This implies that the test results demonstrated stable power generation performance of the MGT power pack regardless of vehicle load changes, thus revealing its feasibility for use with the range extenders of EVs.

A Study on Failure Analysis of Low Pressure Turbine Blade Subject to Fatigue Load (피로하중을 받은 저압 터빈 블레이드의 파손해석에 관한 연구)

  • 홍순혁;이동우;조석수;주원식
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.298-304
    • /
    • 2001
  • Turbine blade is subject to force of three types ; the torsional force by torsional mount, the centrifugal force by the rotation of rotor and the cyclic bending force by steam pressure. The cyclic bending force was a main factor on fatigue strength. SEM fractography in root of turbine blade showed micro-clack width was not dependent on stress intensity factor range. Especially, fatigue did not exist on SEM photograph in root of turbine blade. To clear out the fracture mechanism of turbine blade, nanofractography was needed on 3-dimensional crack initiation and crack growth with high magnification. Fatigue striation partially existed on AFM photograph in root of turbine blade. Therefore, to find a fracture mechanism of the torsion-mounted blade in nuclear power plant, the relation between stress intensity factor range and surface roughness measured by AFM was estimated, and then the load amplitude ΔP applied to turbine blade was predicted exactly by root mean square roughness.

  • PDF

Parametric Study of 2.5 kW Class Propeller Type Micro Hydraulic Turbine (2.5 kW 급 프로펠러형 마이크로 수차 매개변수 연구)

  • MA, SANG-BUM;KIM, SUNG;CHOI, YOUNG-SEOK;CHA, DONG-AN;KIM, JIN-HYUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.4
    • /
    • pp.387-394
    • /
    • 2020
  • A parametric study of a 2.5 kW class propeller type micro hydraulic turbine was performed. In order to analyze the internal flow characteristics in the hydraulic turbine, three dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model were used and the hexahedral grid system was used to construct computational domain. To secure the reliability of the numerical analysis, the grid dependency test was performed using the grid convergence index method based on the Richardson extrapolation, and the grid dependency was removed when about 1.7 million nodes were used. For the parametric study, the axial distance at shroud span (L) between the inlet guide vane and the runner, and the inlet and outlet blade angles (β1, β2) of the runner were selected as the geometric parameters. The inlet and outlet angles of the runner were defined in the 3 spans from the hub to tip, and a total of 7 geometric parameters were investigated. It was confirmed that the outlet angles of the runner had the most sensitive effect on the power and efficiency of the micro hydraulic turbine.

Performance Test of Metal 3D Printed Micro Gas Turbine Engine Combustor (초소형 가스터빈 엔진용 금속 3D 프린팅 연소기 성능 시험)

  • Kim, Jaiho;Kim, Hyungmo;Park, Poomin;Rhee, Dongho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.6
    • /
    • pp.51-58
    • /
    • 2019
  • In this study, a set of performance tests on 3D-printed combustor components were carried out to investigate the performance of 3D-printed component and its feasibility for micro gas turbine engines. The test were conducted for four different equivalence ratios under two different engine operating conditions. The measurement results show that the tested combustor had a low total pressure loss coefficient and a uniform exit temperature distribution. However, the combustion efficiency values are less than 93.5% owing to the large amount of UHC and CO, which is considerably lower than a typical gas turbine engine combustor. The performance data obtained from the tests will be used for combustor performance improvements using 3D-printing technology.

An Application of Harmony Search Algorithm for Operational Cost Minimization of MicroGrid System (마이크로 그리드 운영비용 최소화를 위한 Harmony Search 알고리즘 응용)

  • Rhee, Sang-Bong;Kim, Kyu-Ho;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1287-1293
    • /
    • 2009
  • This paper presents an application of Harmony Search (HM) meta-heuristic optimization algorithm for optimal operation of microgrid system. The microgrid system considered in this paper consists of a wind turbine, a diesel generator, and a fuel cell. An one day load profile which divided 20 minute data and wind resource for wind turbine generator were used for the study. In optimization, the HS algorithm is used for solving the problem of microgrid system operation which a various generation resources are available to meet the customer load demand with minimum operating cost. The application of HS algorithm to optimal operation of microgrid proves its effectiveness to determine optimally the generating resources without any differences of load mismatch and having its nature of fast convergency time as compared to other optimization method.

Development of Performance Simulation Models for MGT (마이크로 가스터빈(MGT) 성능 시뮬레이션 모델 개발)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Rhim, Sang-Kyu;Kim, Jae-Hoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.4
    • /
    • pp.52-62
    • /
    • 2008
  • All forecasts of a future energy demand anticipate an increase across the globe. With the increase of energy demand, the emission of $CO_2$ is also likely to increase by at least the same amount because energy supply will be based on fossil fuels, which is more apparent in a number of developing countries. In this context, the Micro Gas Turbine (MGT) is being considered as a promising solution. In order to propose a feasible concept of those technologies such as improving environmental effect and economics, we performed a sensitivity study for a biomass fueled MGT using a simulation model. The study consists of 1) the fundamental modeling using manufacturer's technical specifications, 2) the correction with the experimental data, and 3) the sensitivity study for system parameters. The simulation model was developed by PEPSE-GT 72, commercial steam/gas turbine simulation toolbox.

A Study on Structural Design and Test of 500W Class Micro Scale Composite Wind Turbine Blade (초소형 풍력터빈 복합재 블레이드 구조 설계에 관한 연구)

  • Gong, Chang-Deok;Kim, Ju-Il
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.190-193
    • /
    • 2005
  • The purpose of the present study is to design a 500W-class micro scale composite wind turbine blade. The blade airfoil of FFA-W3-211 was selected to meet Korean weather condition. The skin-spar-f Dam sandwich type structure was adopted for improving buckling and vibration damping characteristics. The design loads were determined at wind speed of 25m/s. and the structural analysis was performed to confirm safety and stability from strength. buckling and natural frequency using the finite element code. NISA II [6]. The prototype was manufactured using the hand-lay up method and it was experimently tested using the sand bag loading method. In order to evaluate the design results. it was compared with experimental results. According to comparison results. the estimated results such as compressible stress. max tip deflection natural frequency and buckling load factor were well agreed with the experimental results.

  • PDF

Design of 500W Class UMGT for Power Generation (500W급 발전용 초소형 가스터빈 설계)

  • Seo, Jeong-Min;Choi, Bum-Seok;Park, Jun-Young;Park, Cheol-Hoon;Kim, You-Il
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1207-1214
    • /
    • 2011
  • Design of 500W class UMGT(Ultra Micro Gas Turbine) for power generation is conducted. Basic design parameters are obtained by cycle analysis. Off-design performances are predicted by 1D aerodynamic design and 1D performance analysis of compressor and turbine. 3D impellers are designed and 3D performance analysis is carried out to predict the performance characteristics of UMGT. 1D and 3D performance analysis show similar results. Structure analysis is conducted to select materials. Titanium Alloy is proposed for structural stability.

Development of Distributed Micro Gas Turbine(MGT) Technology by using Swine BID-ENERGY (축산폐기물 BIO-ENERGY를 이용한 분산형 마이크로 가스터빈 발전기술 개발)

  • Hur Kwang-beom;Park Jung-Keuk;Lee Jung-bin;Rhim Sang-gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.463-466
    • /
    • 2005
  • As the distributed generation becomes more reliable and economically feasible, it is expected that a higher application of the distributed generation units would be interconnected to the existing grids. This new generation technology is linked to a large number of factors like economics and performance, safety and reliability, market regulations, environmental issues, or grid connection constrains. KEPOD (Korea Electric Power Corporation) is performing the project to develope the Distributed Micro Gas Turbine (MGT) technologies by using Swine BID-ENERGY. This paper describes the plans and strategies for the renewable energy of MGT on actual grid-connection under Korean situations. KEPOD also, has a research plan on bio-gas pretreatment system applicable to our domestic swine renewable resources and is performing concept design of pilot plant to test grid operation. In addition, this testing will be conducted in order to respond to a wide variety of needs for application and economic evaluation in the field of On-site generation.

  • PDF

Performance Prediction of a Micro Gas Turbine Cogeneration System Using Correction Curves and its Applications (보정곡선을 이용한 마이크로가스터빈 열병합발전시스템의 성능예측과 활용)

  • Choi, Byeong Seon;Kim, Jeong Ho;Kim, Min Jae;Kim, Tong Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.2
    • /
    • pp.27-35
    • /
    • 2016
  • The purpose of this study is to develop a method to predict the performance and economics of a micro gas turbine cogeneration system using performance correction curves. The variables of correction curves are ambient temperature, ambient pressure, relative humidity and load fraction. All of the values of correction factors were expressed as relative values with respect to design values at the ISO conditions. Once the correction curves are obtained, system performance can be predicted relatively easily compared to a detailed performance analysis method through a simple multiplication of the correction factors of various variables at any operating conditions. The predicted results using the correction curve method were compared with those by the detailed and more complex performance analysis in a wide operating range, and its feasibility was confirmed. To illustrate the usability of the correction curve method, the results of an economic analysis of a cogeneration system considering varying operating ambient condition and load was presented.