• 제목/요약/키워드: Micro-Tube

검색결과 300건 처리시간 0.026초

디지털 Micro Holographic PTV기법을 이용한 미세 곡관 내부 3차원 유동 측정 (Measurement of 3-D Flow inside a Micro Curved-tube using Digital Micro Holographic Particle Tracking Velocimetry)

  • 김석;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2579-2584
    • /
    • 2007
  • A digital micro holographic particle tracking velocimetry (HPTV) system consisting of a high-speed camera and a single laser with acoustic optical modulator (AOM) chopper was established. The digital micro HPTV system was applied to water flow in a micro curved-tube for measuring instantaneous 3-D velocity field data consecutively. The micro curved-tube is using to reproduce the dorsal aorta or utilize in various lap-on-a-chip. The temporal evolution of a three-dimensional water flow in the micro curved-tube (the curvature, ${\kappa}$=1/${\phi}$, 2/${\phi}$, 4/${\phi}$, 8/${\phi}$) of 100 ${\mu}m$ and 300 ${\mu}m$ inner diameters was obtained and mean velocity field distribution was obtained by statistical-averaging the instantaneous velocity fields.

  • PDF

수평 평활관과 마이크로핀 관내에서 HFC-134a의 응축 및 증발열전달 특성 (Condensation and evaporation heat transfer characteristics of HFC-134a in a horizontal smooth and a micro-finned tube)

  • 이상천;박병덕;한운혁;이재희
    • 대한기계학회논문집B
    • /
    • 제20권5호
    • /
    • pp.1725-1734
    • /
    • 1996
  • Experimental condensation and evaporation heat transfer coefficients were measured in a horizontal smooth tube and a horizontal micro-finned tube with HFC-134a. The test sections are straight, horizontal tubes with have a 9.52mm outside diameter and about 5000mm long. The micro-finned tube had 60 fins with a height of 0.12mm and a spiral angle of 25.deg.. The condensation test section was a double-pipe type with counter flow configuration. The evaporation test section employed an electic heating method. Enhancement factors which is defined as a ratio of the heat transfer coefficient for micro-finned tube to that for smooth tube, varied from 1.3 to 1.6(mass flux:110~190kg/m$^{2}$s) for condensation and 1.2 to 1.5 (mass flux:70~160kg/m$^{2}$s) for evaporation. The experimental data of condensation and evaporation heat transfer coefficients were compared to several empirical correlations. Based on these comparisons, modified correlations of the condensation and evaporation heat transfer coefficient for both smooth and micro-finned tubes were proposed.

Micro-Shock Tube 유동에 대한 실험적 연구 (Experimental Study of Micro-Shock Tube Flow)

  • 박진욱;김규완;;김희동
    • 대한기계학회논문집B
    • /
    • 제39권5호
    • /
    • pp.385-390
    • /
    • 2015
  • Micro shock tube에서 발생하는 비정상파 거동을 실험적으로 조사 하기위해 파막 실험을 수행하였다. 실험은 스테인리스 재질의 micro shock tube를 사용하였으며, 총 8개의 압력센서를 설치하여, 충격파관에서 발생하는 충격파 및 팽창파를 측정하였다. 초기 압력비는 6.3에서 30.5까지 변화시켰으며, 관의 직경은 3mm와 6mm로 하였다. 그리고 두 가지 재질의 격막을 사용하여 격막 조건을 다양하게 실험을 수행하였다. 그 결과로부터 초기 압력비 및 관 직경의 증가에 따라 관내에서 발생되는 충격파 강도는 커지며, 가장 얇은 재질의 격막 조건에서 가장 큰 충격파 강도가 발생했다. 그리고 충격파 감쇠는 관의 직경에 가장 큰 영향을 받았다.

마이크로핀관과 평활관에서의 증발열전달과 압력손실 특성 (Evaporation heat transfer and Pressure loss in micro-fin tubes and a smooth tube)

  • 장세환;정시영;홍영기
    • 설비공학논문집
    • /
    • 제11권2호
    • /
    • pp.215-223
    • /
    • 1999
  • Evaporation heat transfer coefficient and pressure loss were measured for three different micro-fin tubes and a smooth tube. The experiments were carried out with R-22 over a wide range of vapor Quality, mass velocity and heat flux. Heat transfer coefficient of the tube with slightly modified fin shape was found to be higher than that of the commercial reference tube by 60%. The improvement of heat transfer has been achieved without noticeable increase of pressure loss. Heat transfer coefficient was increased with increasing quality, refrigerant mass flux, and heat flux. However, the effect of refrigerant mass flux and heat flux was not great. Heat transfer coefficient at bottom was lower than that at top of the tube in low quality region, which suggested the existence of stratification in the micro-fin tube. Pressure drop was linearly increased with increasing refrigerant quality and was proportional to about square of mass flux.

  • PDF

알루미늄 다채널 평판관내 R-22 증발에 관한 실험적 연구 (An Experimental study on R-22 Evaporation in Flat Aluminum Multi-Channel Tubes)

  • 김정오;조진표;김종원;정호종;김내현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.96-103
    • /
    • 2000
  • In this study, evaporation heat transfer tests were conducted in flat aluminum multi-channel tubes using R-22. Two internal geometries were tested ; one with smooth inner surface and the other with micro-fins. Data are presented for the following range of variables ; vapor quality $(0.1{\sim}0.9)$, mass flux$(100{\sim}600kg/m^2s)$ and heat flux$(5{\sim}15kW/m^2)$. The micro-tin tube showed higher heat transfer coefficients compared with those of the smooth tube. Results showed that, for the smooth tube, the effects of mass flux, quality and heat flux were not prominent, and existing correlations overpredicted the data. For the micro-fin tube at low quality, the heat transfer coefficient increased as heat flux increased. However, the trend was reversed at high quality Kandlikar's correlation predicted the low mass flux data, and Shah's correlation predicted the high mass flux data. The heat transfer coefficient of the micro fin tube was approximately two times larger than that of the plain tube. New correlation was developed based on present data.

  • PDF

마이크로 PIV를 이용한 미세튜브 내부 조류 혈액유동에 관한 실험적 연구 (Experimental Investigation on Flow Characteristics of Chicken Blood in a Micro Tube Using a Micro-PIV Technique)

  • 여창섭;지호성;이상준
    • 대한기계학회논문집B
    • /
    • 제30권11호
    • /
    • pp.1027-1034
    • /
    • 2006
  • In order to investigate flow characteristics of chicken blood in a micro tube of 100$\mu$m in diameter, in-vitro experiments were carried out using a micro-PIV technique. The micro-PIV system consists of a microscope, 2-head Nd:YAG laser, 12 bit cooled CCD camera and a delay generator. Chicken blood with 40% hematocrit was supplied into a micro tube using a syringe pump. The blood flow shows clearly the cell free layer near the tube wall and its thickness is increased with increasing the flow speed. The hemorheological characteristics of chicken blood, including shear rate and shear stress were estimated from the PIV velocity field data obtained. Since the aggregation index of chicken blood is less than 50% of human blood, non-Newtonian flow characteristics of chicken blood are smaller than those of human blood. As the flow rate increases, the degree of flatness in the velocity profile at the center region is decreased and the parabola-shaped shear stress distribution becomes to have a linear profile. Under the same flow rate, chicken blood shows higher shear stress, compared with human blood.

미세유로를 갖는 납작관의 열·유동 해석 (Thermal and Flow Analysis of the Flat Tube with Micro-Channels)

  • 정길완;이관수;김우승
    • 대한기계학회논문집B
    • /
    • 제23권8호
    • /
    • pp.978-986
    • /
    • 1999
  • In this study, the general thermal and flow characteristics of flat tube with micro-channels has been studied and the correlation of Nusselt number and friction factor is proposed. The optimal flat tube geometry is determined by optimal design process. It is assumed to be a three dimensional laminar flow in the analysis of thermal and flow characteristics. The periodic boundary condition is applied since the geometry of flat tube with micro-channels shows uniform cross-section in primary flow direction. Local Nusselt number is examined for thermal characteristics of each membrane, and module average Nusselt number and friction factor are calculated to determine the characteristics of the heat transfer and pressure drop in overall flat tube with microchannels. The correlations between Nusselt number and friction factor are given by Reynolds number, aspect ratio of membranes, and the width of flat tube. ALM (Augmented Lagrangian Multiplier) method is applied to the correlations to determine an optimal shape of flat tube. It is shown that the optimal aspect ratio of flat tube is approximately 1.0, irrespective of the width of flat tube and Reynolds number.

X-ray 미세 영상기법을 이용한 불투명 튜브 내부 미세기포의 크기 및 속도 동시 측정 (Simultaneous measurement of size and velocity of micro-bubbles in an opaque tube using X-ray micro-imaging technique)

  • 김석;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2003년도 추계학술대회 논문집
    • /
    • pp.45-46
    • /
    • 2003
  • The x-ray micro-imaging technique was employed to measure the size and velocity of micro-bubbles moving in an opaque tube simultaneously. Phase contrast images were obtained at interfaces of micro-bubbles between water and air due to different refractive index. Micro-bubbles of $20\~120{\mu}m$ diameter moving upward in an opaque tube $(\phi=2.7mm)$ were tested. For two different working fluids of tap water and DI water, the measured velocity of micro-bubbles is roughly proportional to the square of bubble size.

  • PDF

평행류형 마이크로채널 이산화탄소 증발기에서 냉매분배에 관한 연구 (A Study on the Refrigerant Distribution in a Parallel Flow Micro-Channel $CO_2$ Evaporator)

  • 정시영;김대환
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1079-1083
    • /
    • 2009
  • In this study, the distribution of $CO_2$ in an evaporator with 10 parallel micro channel aluminum tubes are experimentally investigated. Each tube has 6 circular micro channels with a diameter of 0.8mm. The tubes are heated with electric resistance wires, and the distribution of $CO_2$ into each tube is investigated by measuring the outer wall temperature. The outer wall temperature was found to be higher at the exit part of the top tube. It is thought that the $CO_2$ vapor at the upper part of the header reduces the mass flow rate of $CO_2$ into the top tube.

  • PDF

Micro-PIV를 이용한 마이크로 튜브/채널 내에서의 혈장유동측정 (Measurements of Plasma Flows in Micro-Tube/Channel Using Micro-PIV)

  • 고춘식;윤상열;지호성;김경천
    • 대한기계학회논문집B
    • /
    • 제28권5호
    • /
    • pp.587-593
    • /
    • 2004
  • In this paper, flow characteristics of plasma flow in a micro-tube were investigated experimentally using micro particle image velocimetry(micro-PIV). For comparison, the experiments were repeated for deionized(DI) wale. instead of plasma. Both velocity profiles of plasma and do-ionized water are well agreed with the theoretical velocity distribution of newtonian fluid. We also carried out generating plasma-in-oil droplet formation at a Y-junction microchannel. In order to clarify the hydrodynamic aspects involved in plasma droplet formation, Rhodamine-B were mixed with plasma only for visualization of plasma droplet. With oil as the continuous phase and plasma as the dispersed phase, plasma droplet can be generated in a continuous phase flow at a Y-junction. For given experimental parameters, regular-sized droplets are reproducibly formed at a uniform flow conditions.