• Title/Summary/Keyword: Micro-Tester

Search Result 207, Processing Time 0.027 seconds

A Study on the Recrystallization Behavior of Zr-xSn Binary Alloys (Zr-xSn 이원계 합금의 재결정에 관한 연구)

  • Lee, Myeong-Ho;Gu, Jae-Song;Jeong, Yong-Hwan;Jeong, Yeon-Ho
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1123-1128
    • /
    • 1999
  • To investigate the effect of Sn on the recrystallization of Zr-based alloys. Zr-xSn (x=0.5, 0.8, 1.5, 2.0wt.%) alloys were manufactured to be the sheets through the defined manufacturing procedure. The specimens were annealed at $300^{\circ}C$ to $800^{\circ}C$ for 1 hour. The hardness, microstructure and precipitate of the alloys with the annealing temperature were investigated by using micro- knoop hardness tester, optical microscope(O/M) and transmission electron microscope(TEM), respectively. The cold-worked Zr-xSn alloys showed the typical behavior of the recovery. recrystallization, and grain growth. The recrystallization of Zr-xSn alloys occurred between $500^{\circ}C$ and $700^{\circ}C$. As the Sn content increased. the recrystallization temperature of the cold-worked alloys increased but their grain sizes after recrystallization decreased. It is suggested that the recrystallization of the cold- worked Zr alloys be occurred by the subgrain coalescence and growth mechanism.

  • PDF

Microstructure investigation of iron artifacts excavated from Sungseonsa Temple in Chungju city (충주 숭선사지 출토 철제유물의 미세조직 분석)

  • Yu, Jae-Eun;Go, Hyeong-Sun;Yi, Jae-Seong
    • 보존과학연구
    • /
    • s.24
    • /
    • pp.187-213
    • /
    • 2003
  • Sungseonsa Temple site in Chungju city in Chungcheongbuk-doProvince is written in "Goryeosa" as a building for Queen Sinmyeongsunseong, the mother of Gwangjong in AD 954 in Goryeo Dynasty. The museum in Chungcheong University takes charge of the excavation for 3 times from 2000 to 2002 and identified that its construction was carried out till Joseon Dynasty. Among the iron artifacts from the first excavation such as a weeding hoe, a hand knife, a lock, two nails and a plow which had conservation treatments, the sample was collected. Its micro-structure and method of manufacture were investigated. Excavation report for those artifacts has not published yet, therefore, the date of each artifacts is not clearly confirmed. The samples were collected from each part of the objects and then embedded in epoxy resin and etched with nitric acid. The examination of its microstructure is carried out under the microscope and the hardness values were measured by Vickers hardness tester. From the results, some artifacts show different manufacture method sin the each parts. The forming processes of the iron weeding hoe and the iron sickle are similar but the blade of iron weeding hoe was strengthened by carbonization whereas the blade of the iron sickle was done by quenching. The hand knife and the nails were produced through almost same methods and shows similar microstructures. The hand knife seems to be made by repeated beating and folding in low temperature resulting in fine crystallization, but the nail shows large crystallization due to processes in high temperature. Lock is made of white cast iron, that does not show any heat treatment.

  • PDF

The Study on Characteristics of a-C:H Films Deposited by ECR Plasma (전자회전공명 플라즈마를 이용한 a-C:H 박막의 특성 연구)

  • 김인수;장익훈;손영호
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2001.05a
    • /
    • pp.224-231
    • /
    • 2001
  • Hydrogenated amorphous carbon films were deposited by ERC-PECVD with deposition conditions, such as ECR power, gas composition of methane and hydrogen, deposition time, and substrate bias voltage. The characteristics of the film were analyzed using the AES, ERDA, FTIR. Raman spectroscopy and micro hardness tester. From the results of AES and ERDA, the elements in the deposited film were confirmed as carbon and hydrogen atoms. FTIR spectroscopy analysis shows that the atomic bonding structure of a-C:H film consisted of sp³and sp²bonding, most of which is composed of sp³bonding. The structure of the a-C:H films changed from CH₃bonding to CH₂or CH bonding as deposition time increased. We also found that the amount of dehydrogenation in a-C:H films was increased as the bias voltage increased. Raman scattering analysis shows that integrated intensity ratio (I/sub D//I/sub G/) of the D and G peak was increased as the substrate bias voltage increased, and films hardness was increased.

  • PDF

A study on the changes in attractive force of magnetic attachments for overdenture

  • Leem, Han-Wool;Cho, In-Ho;Lee, Jong-Hyuk;Choi, Yu-Sung
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • PURPOSE. Although magnetic attachment is used frequently for overdenture, it is reported that attractive force can be decreased by abrasion and corrosion. The purpose of this study was to establish the clinical basis about considerations and long term prognosis of overdenture using magnetic attachments by investigating the change in attractive force of magnetic attachment applied to the patients. MATERIALS AND METHODS. Among the patients treated with overdenture using magnetic attachments in Dankook University Dental Hospital, attractive force records of 61 magnetic attachments of 20 subjects who re-visited from July 2013 to June 2014 were analyzed. Dental magnet tester (Aichi Micro Intelligent Co., Aichi, Japan) was used for measurement. The magnetic attachments used in this study were Magfit IP-B Flat, Magfit DX400, Magfit DX600 and Magfit DX800 (Aichi Steel Co., Aichi, Japan) filled with Neodymium (NdFeB), a rare-earth magnet. RESULTS. Reduction ratio of attractive force had no significant correlation with conditional variables to which attachments were applied, and was higher when the maintenance period was longer (P<.05, r=.361). Reduction ratio of attractive force was significantly higher in the subject group in which attachments were used over 9 years than within 9 years (P<.05). Furthermore, 16.39% of total magnetic attachments showed detachment of keeper or assembly. CONCLUSION. Attractive force of magnetic attachment is maintained regardless of conditional variables and reduction ratio increased as the maintenance period became longer. Further study on adhesive material, attachment method and design improvement to prevent detachment of magnetic attachment is needed.

Analysis of Mean Deviation in Sliding-wear-rate of Carbon Steel with Various Pearlite Volume Fractions (탄소강의 펄라이트 분율에 따른 미끄럼 마멸속도 편차 분석)

  • Kim, M.G.;Gwon, H.;Hur, H.L.;Kim, Y.-S.
    • Transactions of Materials Processing
    • /
    • v.24 no.3
    • /
    • pp.205-211
    • /
    • 2015
  • The current investigation was performed to study sliding-wear-rate deviation (wear-rate data scatter) in carbon steels with various microstructures. Pure iron, 0.2 wt. % C steel, 0.45 wt. % C steel, and bearing steel (AISI52100) were used for the investigation. These steels possess different microstructures. Microstructures of the pure iron, two carbon steel and the bearing steel were full ferrite, ferrite + pearlite and full pearlite, respectively. Depending on the carbon content, the carbon steel had different pearlite-volume fractions. Dry sliding wear tests of the steel were conducted using a ball-on-disk wear tester at a sliding speed of 0.1 m/s using a bearing ball (AISI52100) as a counterpart. Applied load and sliding distance were 100 N and 300 m, respectively. More than three (up to twelve) tests were conducted for each steel under the same conditions, and the mean deviations in the wear rate of the steel (microstructure) were compared. The wear-rate deviation in the steel with ferrite + pearlite microstructure was higher than that with ferrite microstructure, and the deviation decreased with the increase of pearlite volume fraction. The pure iron and the bearing steel specimens showed much less deviation. The high deviation observed from the ferrite + pearlite steel was attributed to irregular subsurface-crack nucleation and growth at the interface between the two micro constituents (ferrite and pearlite) during the wear test.

Friction Mechanisms of Silicon Wafer and Silicon Wafer Coated with Diamond-like Carbon Film and Two Monolayers

  • Singh R. Arvind;Yoon Eui-Sung;Han Hung-Gu;Kong Ho-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.738-747
    • /
    • 2006
  • The friction behaviour of Si-wafer, diamond-like carbon (DLC) and two self-assembled monolayers (SAMs) namely dimethyldichlorosilane (DMDC) and diphenyl-dichlorosilane (DPDC) coated on Si-wafer was studied under loading conditions in milli-newton (mN) range. Experiments were performed using a ball-on-flat type reciprocating micro-tribo tester. Glass balls with various radii 0.25 mm, 0.5 mm and 1 mm were used. The applied normal load was in the range of 1.5 mN to 4.8 mN. Results showed that the friction increased with the applied normal load in the case of all the test materials. It was also observed that friction was affected by the ball size. Friction increased with the increase in the ball size in the case of Si-wafer. The SAMs also showed a similar trend, but had lower values of friction than those of Si-wafer In-terestingly, for DLC it was observed that friction decreased with the increase in the ball size. This distinct difference in the behavior of friction in DLC was attributed to the difference in the operating mechanism. It was observed that Si-wafer and DLC exhibited wear, whereas wear was absent in the SAMs. Observations showed that solid-solid adhesion was dominant in Si-wafer, while plowing in DLC. The wear in these two materials significantly Influenced their friction. In the case of SAMs their friction behaviour was largely influenced by the nature of their molecular chains.

Color and hardness changes in artificial white spot lesions after resin infiltration (레진 침투법 후 인공 법랑질 백색 병소의 색과 경도 변화 비교)

  • Kim, Ji-Hoon;Son, Ho-Hyun;Chang, Ju-Hea
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.2
    • /
    • pp.90-95
    • /
    • 2012
  • Objectives: The purpose of this study was to determine the effect of resin infiltration technique on color and surface hardness of white spot lesion (WSL) with various degrees of demineralization. Materials and Methods: Ten human upper premolars were cut and divided into quarters with a $3{\times}4mm$ window on the enamel surface. Each specimens were separated into four groups (n = 10) and immersed in demineralization solution to create WSL: control, no treatment (baseline); 12 h, 12 hr demineralization; 24 h, 24 hr demineralization; 48 h, 48 hr demineralization. Resin infiltration was performed to the specimens using Icon (DMG). $CIEL^*a^*b^*$ color parameters of the enamel-dentin complex were determined using a spectroradiometer at baseline, after caries formation and after resin infiltration. Surface hardness was measured by Vickers Micro Hardness Tester (Shimadzu, HMV-2). The differences in color and hardness among the groups were analyzed with ANOVA followed by Tukey test. Results: Resin infiltration induced color changes and increased the hardness of demineralized enamel. After resin infiltration, there was no difference in color change (${\Delta}E^*$) or microhardness among the groups (p < 0.05). Conclusion: There was no difference in the effect of resin infiltration on color and hardness among groups with different extents of demineralization.

Characteristics of NbN Films Deposited on AISI 304 Using Inductively Coupled Plasma Assisted DC Magnetron Sputtering Method

  • Jun, Shinhee;Kim, Junho;Kim, Sunkwang;You, Yong Zoo;Cha, Byungchul
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.5
    • /
    • pp.187-191
    • /
    • 2013
  • Niobium nitride (NbN) films were deposited on AISI 304 stainless steels by inductively coupled plasma (ICP) assisted dc magnetron sputtering method at different ICP powers, and the effects of ICP power on the phase formation, mechanical and chemical properties of the films were investigated. X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FESEM) were used to analyze the crystal structure and micro-knoop hardness was used to measure the hardness of the films. Also, 3-D mechanical profiler and a ball-on-disk wear tester were used to measure the thickness of the films and to estimate wear characteristics, respectively. The thickness of the films decreased but their hardness increased with increasing ICP power, and it was confirmed that only cubic ${\delta}$-NbN(200) remained at high ICP power. At lower ICP powers, a mixture of the hexagonal ${\delta}^{\prime}$-NbN and cubic ${\delta}$-NbN phases was obtained in the films and the hardness decreased. The corrosion potential value increased gradually with increasing ICP power, but the changes of ICP power did not significantly influence the overall corrosion resistance.

Micro Joining Process Using Solderable Anisotropic Conductive Adhesive (Solderable 이방성 도전성 접착제를 이용한 마이크로 접합 프로세스)

  • Yim, Byung-Seung;Jeon, Sung-Ho;Song, Yong;Kim, Yeon-Hee;Kim, Joo-Heon;Kim, Jong-Min
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.73-73
    • /
    • 2009
  • In this sutdy, a new class ACA(Anisotropic Conductive Adhesive) with low-melting-point alloy(LMPA) and self-organized interconnection method were developed. This developed self-organized interconnection method are achieved by the flow, melting, coalescence and wetting characteristics of the LMPA fillers in ACA. In order to observe self-interconnection characteristic, the QFP($14{\times}14{\times}2.7mm$ size and 1mm lead pitch) was used. Thermal characteristic of the ACA and temperature-dependant viscosity characteristics of the polymer were observed by differential scanning calorimetry(DSC) and torsional parallel rheometer, respectively. A electrical and mechanical characteristics of QFP bonding were measured using multimeter and pull tester, respectively. Wetting and coalescence characteristics of LMPA filler particles and morphology of conduction path were observed by microfocus X-ray inspection systems and cross-sectional optical microscope. As a result, the developed self-organized interconnection method has a good electrical characteristic($2.41m{\Omega}$) and bonding strength(17.19N) by metallurgical interconnection of molten solder particles in ACA.

  • PDF

Evaluation of Mechanical Properties and Microstructure Depending on Sintering Heating Rate of IN 939 W Alloy (IN 939 W 합금의 소결 승온 속도에 따른 물리적 특성과 미세조직 분석)

  • Jeon, Junhyub;Lee, Junho;Seo, Namhyuk;Son, Seung Bae;Jung, Jae-Gil;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.29 no.5
    • /
    • pp.399-410
    • /
    • 2022
  • Changes in the mechanical properties and microstructure of an IN 939 W alloy according to the sintering heating rate were evaluated. IN 939 W alloy samples were fabricated by spark plasma sintering. The phase fraction, number density, and mean radius of the IN 939 W alloy were calculated using a thermodynamic calculation. A universal testing machine and micro-Vickers hardness tester were employed to confirm the mechanical properties of the IN 939 W alloy. X-ray diffraction, optical microscopy, field-emission scanning electron microscopy, Cs-corrected-field emission transmission electron microscopy, and energy dispersive X-ray spectrometry were used to evaluate the microstructure of the alloy. The rapid sintering heating rate resulted in a slightly dispersed γ' phase and chromium oxide. It also suppressed the precipitation of the η phase. These helped to reinforce the mechanical properties.