• Title/Summary/Keyword: Micro-Processing

Search Result 1,058, Processing Time 0.025 seconds

On the analysis of micro pattern forming on the thin sheet metal (마이크로 박판 미세 패턴 성형공정에 대한 해석적 연구)

  • Cha, S.H.;Shin, M.S.;Kim, J.H.;Kim, J.B.;Lee, H.J.;Song, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.53-56
    • /
    • 2009
  • Roll forming process is one of important metal processing technology because the process is simple and economical. These days, roll forming process is tried to be employed in manufacturing the circuit board, barrier ribs and solar cell plate for productivity. However, it is difficult to apply to the forming of micro scale or sub-micro scale pattern. In this study, the roll forming processing for the micro scale is designed and analyzed. In this study, the forming of micro pattern for solar cell plate by incremental roll forming process is analyzed. The solar cell plate may have thousands of patterns, and the analysis of forming considering all the patterns is impossible due to the computational costs. In this study, analyses are carried out for various numbers of patterns and the results are compared. It is shown that the analyses results with four row patterns and twelve row patterns are same. So, it is considered that the analysis can be carried out for only four rows of pattern for the design of incremental roll forming process. Also experiment is carried out process that is designed through simulation.

  • PDF

On the effective analysis method of micro pattern forming on the thin sheet metal (마이크로 박판 미세 패턴 성형공정에 대한 해석 효율성 연구)

  • Cha, S.H.;Shin, M.S.;Kim, J.H.;Kim, J.B.;Lee, H.J.;Song, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.56-59
    • /
    • 2009
  • Roll forming process is one of important metal processing technology because the process is simple and economical. These days, roll forming process is tried to be employed in manufacturing the circuit board, barrier ribs and solar cell plate for productivity. However, it is difficult to apply to the forming of micro scale or sub-micro scale pattern. In this study, the roll forming processing for the micro scale is designed and analyzed. In this study, the forming of micro pattern for solar cell plate by incremental roll forming process is analyzed. The solar cell plate may have thousands of patterns, and the analysis of forming considering all the patterns is impossible due to the computational costs. In this study, analyses are carried out for various numbers of patterns and the results are compared. It is shown that the analyses results with four row patterns and twelve row patterns are same. So, it is considered that the analysis can be carried out for only four rows of pattern for the design of incremental roll forming process.

  • PDF

Study on the Recycling of Nuclear Graphite after Micro-Oxidation

  • Liu, Juan;Wang, Chen;Dong, Limin;Liang, Tongxiang
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.182-188
    • /
    • 2016
  • In this paper, a feasible strategy for the recycling of nuclear graphite is reported, based on the formation mechanism and the removal of carbon-14 by micro-oxidation. We investigated whether ground micro-oxidation graphite could be used as a filler to make new recycled graphite and which graphite/pitch coke ratio will give the recycled graphite outstanding properties (e.g., apparent density, flexural strength, compressive strength, and tensile strength). According to the existing properties of nuclear graphite, the ratio of graphite to pitch coke should not exceed 3. The recycled reactor graphite has been proven superior in density, strength, and thermal conductivity. The micro-oxidation process enhances the strength of the recycled graphite because there are more pores and unsmooth surfaces on the oxidized graphite particles, which is beneficial for the access of the pitch binder and leads to efficient joint adhesion among the graphite particles.

Die Compaction and Sintering Behavior of Fe Micro-nano-powder Feedstock for Micro-PIM (마이크로 PIM용 Fe 마이크로-나노 혼합분말 피드스톡의 다이성형 및 소결거동)

  • You, Woo-Kyung;Choi, Joon-Phil;Lee, Jai-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.32-39
    • /
    • 2011
  • The present investigation was performed on the die compaction and sintering behavior of Fe micro-nano mixed powder with a mixed binder for powder injection molding. Warm die compaction of the feedstock for simulation of the static injection molding process was conducted using a cylindrical mold of 10 mm diameter at $100^{\circ}C$ under 4MPa. The die compaction of the micro-nanopowder feedstock underwent a uniform molding behavior showing a homogeneous distribution of nanopowders among the micropowders without porosity and distortion. After debinding, the powder compact maintained a uniform structure without crack and distortion, leading to a high green density of 64.2% corresponding to the initial powder loading of 65%. The sintering experiment showed that the micro-nanopowder compact underwent a near full and isotropic densification process during sintering. It was observed that the nanopowders effectively suppressed the growth of micropowder grains during densification process. Conclusively, the use of nanopowder for PIM feedstock might provide a new concept for processing a full density PIM parts with fine microstructure.

A Basic Study on Burr Formation of Micro Cutting Process with the Ferrous Metal at tow Temperature (철계 금속 마이크로 절삭 가공시 저온 환경에서의 버 발생에 관한 기초연구)

  • Kim, G.H.;Kim, D.J.;Sohn, J.I.;Yoon, G.S.;Heo, Y.M.;Cho, M.W.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.166-171
    • /
    • 2009
  • In this paper, a basic study on micro cutting process with SM20C at low temperature environment was performed. In macro cutting fields, the cryogenic cutting process has been applied to cut the refractory metal but, the serious problem may be generated in micro cutting fields by the cryogenic environment. However, if the proper low temperature is applied to micro cutting area, the cooling effect of cutting heat is expected. Such effect can make the reduction of tool wear and burr formation. For verifying this possibility, the micro cutting experiment at low temperature was performed and SEM images were analyzed.

Optimum Manufacturing Processes of Micro-drill (마이크로 드릴의 최적 생산설계)

  • Kim, Gunhoi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.109-116
    • /
    • 2002
  • Resently, reduction of industrial products in size and weight has increased by the application of micro-drill for gadgets of high precision and gave rise to a great interest in a micro-drilling. Due to the lack of tool stiffness and the chip packing, micro-drilling requires not only the robust tool structure which has not affected by the vibration, but also the effective drilling methods designed to prevent tool fracture from cutting troubles. Firstly, this paper presents a new manufacturing process of micro-drill for improving the product rate and an optimum shape of micro-drill for lengthening the tool life, and secondly suggests between tool life and drilling torque acquired in the inprocess monitoring system.

  • PDF

The Partial Discharge Resistances of Epoxy-Nano-and-Micro Composites

  • Lee, Chang-Hoon;Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.89-91
    • /
    • 2010
  • Partial discharge (PD) resistances were investigated for three types of samples: original epoxy resins, epoxy micro composites with and without the silane processing, and mixture composites with micro and nano particles. The PD was applied to these materials using rod, gap, and plane electrodes. The partial discharge resistance found in the micro composites was better than that found in the original epoxy resin. Moreover, the mixture composites of $SiO_2$ nano and micro particles had much larger resistances than the original epoxy resin or microcomposites. It can be regarded that this excellent property was due to the fact that the nano particles have a dense structure between the micro particles.

A Study on design of the PZT Cantilever for Micro Switch (Micro Switch용 PZT Cantilever의 설계에 관한 연구)

  • Kim, In-Sung;Song, Jae-Sung;Min, Bok-Ki;Jeong, Soon-Jong;Muller, A.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.422-423
    • /
    • 2005
  • RF Micro switches is a miniature device or an array of integration devices and mechanical components and fabricated with Ie batch-processing techniques. RF Micro switches application area are in phased arrays and reconfigurable apertures for defence and telecommunication systems, switching network for satellite communication, and single-pole double throw switches for wireless application. Recently, RF Micro switches have been developed for the application to the milimeter wave system. RF Micro switches offer a substantilly higher performance than PIN diode or FET switches. In this paper, SPDT(single-pole-double-throw) switch are designed to use 10 GHz. Actuation voltage and displacement are simulated by tool.

  • PDF

Fabrication of a Micro Die by LIGA Process and Hybrid Powder Extrusion Process of Micro-spur Gear (LIGA 공정을 이용한 초소형 스퍼기어 금형 제작 및 하이브리드 분말 압출성형)

  • Lee, K.H.;Hwang, D.W.;Kim, J.H.;Jang, S.S.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.352-356
    • /
    • 2010
  • This paper was designed to fabricate the micro-spur gear by the LIGA and hybrid powder extrusion process. It is important to manufacture a micro-die with a high aspect ratio and determine appropriate extrusion conditions for a microforming. Ni has been used to fabricate micro-dies. LIGA process was capable to produce micro-extrusion dies with close tolerance, longer bearing length and adequate surface quality. Superplastic Al-78Zn powders have the great advantage in achieving deformation under low stresses and exhibiting good micro-formability with average strain rate raging from $10^{-3}$ to $10^{-2} s^{-1}$ and constant temperature ranging from 503 to 563K. Al-78Zn powders were compacted into a cylindrical shape ($\Phi3\times$h10mm) under compressive force of 10kN and, subsequently, the compacted powders were extruded by the hybrid powder extrusion process controlling of the temperature holing time for a improvement on formability of Al-22Zn powder. Micro-extrusion has succeeded in forming micro-gear shafts.

Fabrication of LGP Micro-Channels by Micro End-Milling and MR Fluid Jet Polishing (Micro End-Milling과 MR Fluid Jet Polishing을 이용한 도광판 마이크로 채널 제작)

  • Lee, J.W.;Ha, S.J.;Hong, K.P.;Cho, M.W.;Kim, G.H.;Yoon, G.S.;Je, T.J.
    • Transactions of Materials Processing
    • /
    • v.22 no.2
    • /
    • pp.80-85
    • /
    • 2013
  • The surface integrity of micro-machined products affects the performance of products significantly. Micro-burrs resulting from micro-cutting degrades the surface quality. Therefore it is desired to eliminate them completely and many studies have been undertaken for this purpose. In this study, micro-end-milling was carried out on nickel alloy and brass materials commercially used for light guide plate mold in 3-D optical devices. After completing this micro-machining, the burr heights were measured with a microscope. Then, deburring was done on the machined edges using the MR jet polishing method. A jet angle of $0^{\circ}$ and deburring times of 1, 3, and 5 min. were chosen. It was found that burrs were completely eliminated after 5 min of MR fluid jet polishing.