• 제목/요약/키워드: Micro-PIV velocity field measurement technique

검색결과 10건 처리시간 0.02초

암 모기 흡혈과정 가시화 (Visualization of blood sucking phenomena of a female mosquito)

  • 김보흠;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.114-115
    • /
    • 2007
  • As a carrier of malaria and sneak of blood, mosquitoes are regarded as an unpleasant insect. However, there are novel phenomena that happen inside a mosquito. Among them, we focused on the blood sucking function of a female mosquito. The main objective of this study was to investigate the mosquito's pumping mechanism in order to resolve the problem encountered when we inject or transport biologic fluids into a micro-chip. To analyze the pumping mechanism, we visualized the blood sucking process inside a female mosquito. Flow characteristics of blood flow in a proboscis were investigated experimentally using a micro-PIV velocity field measurement technique. The anatomical variation of head, thorax, abdomen which work as pumps and valves, was visualized using the syncrotron X-ray micro-imaging technique.

  • PDF

유정란 배아 혈액유동의 in vivo 계측 (In Vivo Measurements of Blood Flow in a Chicken Embryo Using Micro PIV Technique)

  • 여창섭;한규연;이상준
    • 대한기계학회논문집B
    • /
    • 제30권4호
    • /
    • pp.314-319
    • /
    • 2006
  • To analyze in-vivo blood flow characteristics in a chicken embryo, in-vivo experiment was carried out using micro-PIV technique. Because endothelial cells in blood vessels are subject to shear stress of blood flow, it is important to get velocity field information of the placental blood flow. Instantaneous velocity fields of an extraembryonic blood vessel using a high-speed camera and intravital microscope. The flow images of RBCs were obtained with a spatial resolution of $20\times20{\mu}m$ in the whole blood vessels. The mean velocity field data confirm that the blood flow does show non-Newtonian fluid characteristic. The blood in a branched vessel merged smoothly without any flow separation into the main blood vessel with the presence of a slight bump. This in-vivo micro-PIV measurement technique can be used as a powerful tool in various blood flow researches.

미세 생체유동 해석을 위한 첨단 유동가시화기법 (Advanced Flow Visualization Techniques for Diagnosing Microscale Biofluid Flows)

  • 이상준
    • 대한기계학회논문집B
    • /
    • 제33권1호
    • /
    • pp.1-8
    • /
    • 2009
  • Recently microscale biofluid flows have been receiving large attention in various research areas. However, most conventional imaging techniques are unsatisfactory due to difficulties encountered in the visualization of microscale biological flows. Recent advances in optics and digital image processing techniques have made it possible to develop several advanced micro-PIV/PTV techniques. They can be used to get quantitative velocity field information of various biofluid flows from visualized images of tracer particles. In this paper, as new advanced micro-PIV techniques suitable for biofluid flow analysis, the basic principle and typical applications of the time-resolved micro-PIV and X-ray micro-PIV methods are explained. As a 3D velocity field measurement technique for measuring microscale flows, holographic micro-PTV method is introduced. These advanced PIV/PTV techniques can be used to reveal the basic physics of various microscale biological flows and will play an important role in visualizing veiled biofluid flow phenomena, for which conventional methods have many difficulties to analyze.

Y형 마이크로채널에서의 물/기름 2상 유동에 대한 Micro-PIV 측정 (Micro-PIV Measurement of Water/Oil Two Phase Flow in a Y-Junction Microchannel)

  • 윤상열;고춘식;김경천
    • 대한기계학회논문집B
    • /
    • 제28권6호
    • /
    • pp.682-687
    • /
    • 2004
  • Y-junction microchannels are widely used as a flew mixer. Fluids are entered from two branch channels and merged together at a combined channel. In this study, we suggest a simple method to create the fluid digitization using flow instability phenomena. Two immiscible liquids (water/oil) are infused continuously to each Y-junction inlets. Because of the differences in fluid and flow properties at the interface, oil droplet is formed automatically followed by flow instability. In order to clarify the hydrodynamic aspects involved in oil droplet formation, a quantitative flow visualization study has performed. Highly resolved velocity vector fields are obtained by a micro-PIV technique, so that detail flow structures around the droplet are illustrated. In this study, fluorescent particles were mixed with water only for visualization of oil droplet and velocity field measurement in water flow.

Micro-PIV Measurements of In Vitro Blood Flow in a Micro-Channel

  • Park, Cheol-Woo;Lee, Sang-Joon;Shin, Se-Hyun
    • International Journal of Vascular Biomedical Engineering
    • /
    • 제1권2호
    • /
    • pp.30-35
    • /
    • 2003
  • Flow characteristics of blood flow in a micro channel were investigated experimentally using a micro-PIV (Particle Image Velocimetry) velocity field measurement technique. The main objective of this study was to understand the real blood flow in micron-sized blood vessels. The Reynolds number based on the hydraulic diameter of micro-channel for deionized (DI) water was about Re=0.34. For each experimental condition, 100 instantaneous velocity fields were captured and ensemble-averaged to get the spatial distributions of mean velocity. In addition, the motion of RBC (Red Blood Cell) was visualized with a high-speed CCD camera. The captured flow images of nano-scale fluorescent tracer particles in DI water were clear and gave good velocity tracking-ability. However, there were substantial velocity variations in the central region of real blood flow in a micro-channel due to the presence of red blood cells.

  • PDF

마이크로 채널 내부 전기삼투 유속 측정을 통한 유리표면의 Zeta-potential 측정 (Zeta-potential Measurement on Glass Surface by Measuring Electro-osmotic Velocity inside a Micro-channel)

  • 한수동;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2005년도 추계학술대회 논문집
    • /
    • pp.80-84
    • /
    • 2005
  • Many important properties in colloidal systems are usually determined by surface charge ($\zeta$-potential) of the contacted solid surface. In this study, $\zeta$-potential of glass $\mu$-channel was evaluated from the electro-osmotic velocity distribution. The electro-osmotic velocity inside a glass $\mu$-channel was measured using a micro-PIV velocity field measurement technique. This evaluation method is more simple and easy to approach, compared with the traditional streaming potential technique. The $\zeta$-potential in the glass $\mu$-channel was measured for two different mole NaCl solutions. The effect of an anion surfactant, sodium dodecyl sulphate (SDS), on the electro-osmotic velocity and $\zeta$-potential in the glass surface was also studied. In the range of $0\∼6$mM, the surfactant SDS was added to NaCl solution in four different mole concentrations. As a result, the addition of SDS increases $\zeta$-potential in the surface of the glass $\mu$-channel. The measured $\zeta$-potential was found to vary from-260 to-70mV. When negatively charged particles were used, the flow direction was opposite compared with that of neutral particles. The $\zeta$-potential has a positive sign for the negative particles.

  • PDF

마이크로 채널 내부 전기삼투 유동의 Zeta-potential 계측 (Measurement of Zeta-potential of Electro-osmotic Flow Inside a Micro-channel)

  • 한수동;이상준
    • 대한기계학회논문집B
    • /
    • 제30권10호
    • /
    • pp.935-941
    • /
    • 2006
  • Many important properties in colloidal systems are usually determined by surface charge $({\zeta}-potential)$ of the contacted solid surface. In this study, ${\zeta}-potential$ of glass ${\mu}-channel$ was evaluated from the electro-osmotic velocity distribution. The electro-osmotic velocity inside a glass f-channel was measured using a micro-PIV velocity field measurement technique. This evaluation method is more simple and easy to approach, compared with the traditional streaming potential technique. The ${\zeta}-potential$ in the glass ${\mu}-channel$ was measured fur two different mole NaCl solutions. The effect of an anion surfactant, sodium dodecyl sulphate (SDS), on the electro-osmotic velocity and f-potential in the glass surface was also studied. In the range of $0{\sim}6mM$, the surfactant SDS was added to NaCl solution in few different mole concentrations. As a result, the addition of SDS increases ${\zeta}-potential$ in the surface of the glass ${\mu}-channel$. The measured $\zeta-potential$ was found to vary from -260 to -70mV. When negatively charged particles were used, the flow direction was opposite compared with that of neutral particles. The ${\zeta}-potential$ has a positive sign for the negative particles.

마이크로 리블렛이 부착된 NACA0012 익형의 항력 감소 연구 (Drag Reduction of NACA0012 Airfoil with a Flexible Micro-riblet)

  • 장영길;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.479-482
    • /
    • 2002
  • Riblets with longitudinal grooves along the streamwise direction have been used as an effective flow control technique for drag reduction. A flexible micro-riblet with v-grooves of peak-to-peak spacing of $300{\mu}m$ was made using a MEMS fabrication process of PDMS replica. The flexible micro-riblet was attached on the whole surface of a NACA0012 airfoil with which grooves are aligned with the streamwise direction. The riblet surface reduces drag coefficient about $7.9{\%}\;at\;U_o=3.3m/s$, however, it increases drag about $8{\%}\;at\;U_o=7.0m/s$, compared with the smooth airfoil without riblets. The near wake has been investigated experimentally far the cases of drag reduction ($U_o\;=\;3.3 m/s$) and drag increase ($U_o\;=\;7 m/s$). Five hundred instantaneous velocity fields were measured for each experimental condition using the cross-correlation PIV velocity field measurement technique. The instantaneous velocity fields were ensemble averaged to get spatial distribution of turbulent statistics such as turbulent kinetic energy. The experimental results were compared with those of a smooth airfoil under the same flow condition. The micro-riblet surface influences the near wake flow structure largely, especially in the region near the body surface

  • PDF

하이브리드 마이크로/나노 PIV 시스템 개발 (Development of Hybrid Micro/Nano PIV system)

  • 민영욱;이동엽;김경천
    • 한국가시화정보학회지
    • /
    • 제8권4호
    • /
    • pp.31-37
    • /
    • 2010
  • In this study, a novel hybrid micro/nano PIV system combining defocusing and TIRFM technique has been developed for the multiscale flow measurement. With the developed system, both far and near field velocity fields have been measured simultaneously in a 2D straight microchannel and the particle trajectories were extracted by the nearest tracking algorithm. The shear rate values taken from experimental results have been estimated by comparing with the analytical solution of 2D Poiseuille flow and it is confirmed that the result shows good agreement with the theoretical value.

공초점 레이저 주사 현미경을 이용한 혈구 유동가시화 및 세포공핍층 측정에 관한 연구 (Flow Visualization of Blood Cell and Detection of Cell Depleted Layer Using a Confocal Laser Scanning Microscope)

  • 임수희;김위한;이호;이춘영;박철우
    • 한국가시화정보학회지
    • /
    • 제8권1호
    • /
    • pp.46-52
    • /
    • 2010
  • In the present study, we employed the confocal laser scanning microscopy (CLSM) system to visualize the blood flow field with $1{\times}1{\mu}m^2$ spatial resolution. Based on the confocal microscopic image of red blood cells (RBCs), we performed the velocity vector field measurement and evaluated characteristics of cell migration from the cell depleted layer thickness calculation. The rat and mouse's blood were supplied into a micro glass tubes in vitro. The line scanning rate of confocal microscopy was 15 kHz for a $500{\times}500$ pixels image. As a result, the red blood cell itself can be used as a tracer directly without any kind of invasive tracer particle to get the velocity vector field of blood flow by performing particle image velocimetry (PIV) technique.