• Title/Summary/Keyword: Micro-Learning

Search Result 177, Processing Time 0.032 seconds

Analysis of Deep learning Quantization Technology for Micro-sized IoT devices (초소형 IoT 장치에 구현 가능한 딥러닝 양자화 기술 분석)

  • YoungMin KIM;KyungHyun Han;Seong Oun Hwang
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.9-17
    • /
    • 2023
  • Deep learning with large amount of computations is difficult to implement on micro-sized IoT devices or moblie devices. Recently, lightweight deep learning technologies have been introduced to make sure that deep learning can be implemented even on small devices by reducing the amount of computation of the model. Quantization is one of lightweight techniques that can be efficiently used to reduce the memory and size of the model by expressing parameter values with continuous distribution as discrete values of fixed bits. However, the accuracy of the model is reduced due to discrete value representation in quantization. In this paper, we introduce various quantization techniques to correct the accuracy. We selected APoT and EWGS from existing quantization techniques, and comparatively analyzed the results through experimentations The selected techniques were trained and tested with CIFAR-10 or CIFAR-100 datasets in the ResNet model. We found out problems with them through experimental results analysis and presented directions for future research.

Generation and Validation of Finite Element Models of Computed Tomography for Unidirectional Composites Using Supervised Learning-based Segmentation Techniques (지도학습 기반 분할기법을 이용한 단층 촬영된 단방향 복합재료의 유한요소모델 생성 및 검증)

  • Taeyi Kim;Seong-Won Jin;Yeong-Bae Kim;Jae Hyuk Lim;YunHo Kim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.395-401
    • /
    • 2023
  • In this study, finite element modeling of unidirectional composite materials of the computed tomography (CT) was conducted using a supervised learning-based segmentation technique. Firstly, Micro-CT scan was performed to obtain the raw volume of unidirectional composite materials, providing microstructure information. From the CT volume images, actual microstructure of the cross-section of unidirectional composite materials was extracted by the labeling process. Then, a U-net deep learning model was trained with a small number of raw images as inputs and their labeled images as outputs to generate a segmentation model. Subsequently, most of remaining images were input to the trained U-net deep learning model to segment all raw volume for identifying complex microstructure, which was used for the generation of finite element model. Finally, the fiber volume fraction of the finite element model was compared with that of experimentally measured volume to validate the appropriateness of the proposed method.

Exploring Cancer-Specific microRNA-mRNA Interactions by Evolutionary Layered Hypernetwork Models (진화연산 기반 계층적 하이퍼네트워크 모델에 의한 암 특이적 microRNA-mRNA 상호작용 탐색)

  • Kim, Soo-Jin;Ha, Jung-Woo;Zhang, Byoung-Tak
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.10
    • /
    • pp.980-984
    • /
    • 2010
  • Exploring microRNA (miRNA) and mRNA regulatory interactions may give new insights into diverse biological phenomena. Recently, miRNAs have been discovered as important regulators that play a major role in various cellular processes. Therefore, it is essential to identify functional interactions between miRNAs and mRNAs for understanding the context- dependent activities of miRNAs in complex biological systems. While elucidating complex miRNA-mRNA interactions has been studied with experimental and computational approaches, it is still difficult to infer miRNA-mRNA regulatory modules. Here we present a novel method, termed layered hypernetworks (LHNs), for identifying functional miRNA-mRNA interactions from heterogeneous expression data. In experiments, we apply the LHN model to miRNA and mRNA expression profiles on multiple cancers. The proposed method identifies cancer-specific miRNA-mRNA interactions. We show the biological significance of the discovered miRNA- mRNA interactions.

Research of soccer robot system strategies

  • Bae, Jong-Il;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.149.4-149
    • /
    • 2001
  • In this paper, the multiple micro robot soccer playing system is introduced at first. Learning and evolving in artificial agents is a difficult problem, but on the other hand a challenging task. In our laboratory, this soccer studies mainly centered on single agent learning problem. The construction of such experimental system has involved lots of kinds of challenges such as robot designing, vision processing, motion controlling. At last we will give some results showing that the proposed approach is feasible to guide the design of common agents system.

  • PDF

Classification Performance Analysis of Silicon Wafer Micro-Cracks Based on SVM (SVM 기반 실리콘 웨이퍼 마이크로크랙의 분류성능 분석)

  • Kim, Sang Yeon;Kim, Gyung Bum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.9
    • /
    • pp.715-721
    • /
    • 2016
  • In this paper, the classification rate of micro-cracks in silicon wafers was improved using a SVM. In case I, we investigated how feature data of micro-cracks and SVM parameters affect a classification rate. As a result, weighting vector and bias did not affect the classification rate, which was improved in case of high cost and sigmoid kernel function. Case II was performed using a more high quality image than that in case I. It was identified that learning data and input data had a large effect on the classification rate. Finally, images from cases I and II and another illumination system were used in case III. In spite of different condition images, good classification rates was achieved. Critical points for micro-crack classification improvement are SVM parameters, kernel function, clustered feature data, and experimental conditions. In the future, excellent results could be obtained through SVM parameter tuning and clustered feature data.

Affective Computing Among Individuals in Deep Learning

  • Kim, Seong-Kyu (Steve)
    • Journal of Multimedia Information System
    • /
    • v.7 no.2
    • /
    • pp.115-124
    • /
    • 2020
  • This paper is a study of deep learning among artificial intelligence technology which has been developing many technologies recently. Especially, I am talking about emotional computing that has been mentioned a lot recently during deep learning. Emotional computing, in other words, is a passive concept that is dominated by people who scientifically analyze human sensibilities and reflect them in product development or system design, and a more active concept that studies how devices and systems understand humans and communicate with people in different modes. This emotional signal extraction, sensitivity, and psychology recognition technology is defined as a technology to process, analyze, and recognize psycho-sensitivity based on micro-small, hyper-sensor technology, and sensitive signals and information that can be sensed by the active movement of the autonomic nervous system caused by human emotional changes in everyday life. Chapter 1 talks about overview and Chapter 2 shows related research. Chapter 3 shows the problems and models of real emotional computing and Chapter 4 shows this paper as a conclusion.

An In-Depth Understanding of Five Asian English Teachers' Beliefs

  • Shin, Soo-Jeong
    • English Language & Literature Teaching
    • /
    • v.8 no.1
    • /
    • pp.103-124
    • /
    • 2002
  • For the current study, five Asian English teachers participated in their case studies to investigate an in-depth understanding of their beliefs about teaching and learning English as a foreign language. Data were collected through structured and unstructured interviews, written documents, observations of teacher-participants' micro teaching, a research methodology journal and a self-reflection journal. This study described the beliefs that Asian English teachers brought to the teacher preparation program and examined to see if these teacher-participants who were involved in case studies perceived change in their beliefs. The study found that formal and informal learning experiences greatly shaped the way teacher-participants' beliefs about the way learning and teaching ought to be. In addition, early experiences of learning and teaching influenced teacher-participants' change in beliefs.

  • PDF

A Multiple Classifier System based on Dynamic Classifier Selection having Local Property (지역적 특성을 갖는 동적 선택 방법에 기반한 다중 인식기 시스템)

  • 송혜정;김백섭
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.3_4
    • /
    • pp.339-346
    • /
    • 2003
  • This paper proposes a multiple classifier system having massive micro classifiers. The micro classifiers are trained by using a local set of training patterns. The k nearest neighboring training patterns of one training pattern comprise the local region for training a micro classifier. Each training pattern is incorporated with one or more micro classifiers. Two types of micro classifiers are adapted in this paper. SVM with linear kernel and SVM with RBF kernel. Classification is done by selecting the best micro classifier among the micro classifiers in vicinity of incoming test pattern. To measure the goodness of each micro classifier, the weighted sum of correctly classified training patterns in vicinity of the test pattern is used. Experiments have been done on Elena database. Results show that the proposed method gives better classification accuracy than any conventional classifiers like SVM, k-NN and the conventional classifier combination/selection scheme.

microRNA target prediction when negative data is not available for learning (학습을 위한 네거티브 데이터가 존재하지 않는 경우의 microRNA 타겟 예측 방법)

  • Rhee, Je-Keun;Kim, Soo-Jin;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.212-216
    • /
    • 2008
  • 기존의 알려진 데이터에 기반하여 분류 알고리즘을 통해 새로운 생물학적인 사실을 예측하는 것은 생물학 연구에 매우 유용하다. 하지만 생물학 데이터 분류 문제에서 positive 데이터만 존재할 뿐, negative 데이터는 존재하지 않는 경우가 많다. 이와 같은 상황에서는 많은 경우에 임의로 negative data를 구성하여 사용하게 된다. 하지만, negative 데이터는 실제로 negative임이 보장된 것이 아니고, 임의로 생성된 데이터의 특성에 따라 분류 성능 및 모델의 특성에 많은 차이를 보일 수 있다. 따라서 본 논문에서는 단일 클래스 분류 알고리즘 중 하나인 support vector data description(SVDD) 방법을 이용하여 실제 microRNA target 예측 문제에서 positive 데이터만을 이용하여 학습하고 분류를 수행하였다. 이를 통해 일반적인 이진 분류 방법에 비해 이와 같은 방법이 실제 생물학 문제에 보다 적합하게 적용될 수 있음을 확인한다.

  • PDF

Search for Designing Strategies of E-Learning for Engineering Through Analyzing the Best Practices of Overseas MOOCs (해외 MOOC 우수사례 분석을 통한 공학 분야 이러닝 콘텐츠 설계 전략 탐색)

  • Jung, Hyojung;An, Junghyun;Lee, Hyejeong
    • Journal of Practical Engineering Education
    • /
    • v.8 no.1
    • /
    • pp.31-37
    • /
    • 2016
  • Five and above engineering courses were selected from each of exemplary international MOOC platforms, and common e-learning design strategies were drawn out through observing the courses and analyzing the course elements. By finding out both macro(platform) and micro(content) levels of designing strategies, this study suggests the direction for designing engineering courses incorporating e-learning nationally. The major trend of current e-learning design is to provide bite-sized contents rapidly created and to deploy instructional strategies for promoting student participation in learning and diverse and contextualized learning experiences.