• Title/Summary/Keyword: Micro-Fractography

Search Result 19, Processing Time 0.037 seconds

A study on the fatigue characteristics and Fractography of AL6061-T6 alloy by optimal peening condition (최적 피닝조건을 적용한 A6061-T6합금의 피로특성 및 Fractography에 관한 연구)

  • Lee, Dong-Sun;Cheong, Seong-Kyun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.268-273
    • /
    • 2007
  • As the industrial society develops rapidly, the weight reduction and high strength are gradually demanded. In case of the welded joint for the rolling stock which receives the repeated load, the fracture can be easily occurred. However, the durability and fatigue characteristics can be improved if the shot peening technique is applied. The optimal peening process should be applied to the metal surface because the over peening can lower the durability of parts. Thus, the fatigue characteristics and Fractography of welded A6061-T6 alloy for a rolling stock were studied in the paper. The optimal peening condition and Fractography were examined. The experimental result show that over peening can lower fatigue life caused by micro crack, fold and incrustation. The fatigue life of welded A6061-T6 was tremendously improved.

  • PDF

Fractographic Analysis Method of Fatigue Fracture Surface under Program and Random Loading for Aluminum Alloy (알루미늄 합금의 랜덤하중 하에서 발생한 피로파면 해석 방법)

  • 김상태;최성종;양현태;이희원
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2055-2060
    • /
    • 2003
  • Striation is a typical pattern observed on the fatigue fracture surface and the spacing is known to correspond to a macroscopic fatigue crack growth rate, and many models for the predict in the formation of such striation have been proposed. However, these theories and methods can't be applied under random loading spectrum. In this study, the fatigue tests were carried out on aluminum alloy under random loading spectrum. The fatigue fracture surfaces were observed in the scanning electron microscope (SEM) and great quantities of SEM micrographs were synthesized and saved in computer system. The space and morphology of several large-scale striations, which are expected to from at the relatively greater load range in loading block, were observed. The crack length for each loading blocks was decided in consideration of regularity and repetition of those striations. It is shown that the applicability of fractographic methods on the fatigue fracture surface under random loading spectrum.

Failure Analysis of Circulating Water Pump Shaft in Power Plant (발전 계획에서 순환 물 펌프 고장 분석)

  • Lee, Jaehong;Jung, Nam-gun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.125-128
    • /
    • 2021
  • This paper presents the root cause failure analysis of the circulating water pump in the 560 MW thermal power plant. A fractured austenitic stainless-steel shaft operated for 24 years was examined. Fracture morphology was investigated by micro and macro-fractographic analysis. The metallurgical analyses including chemical analysis, metallography and hardness testing were performed. The analysis reveals that the pump shaft was fractured due to the reverse bending load with combination of rotating bending load. Corrective actions for plant operator was recommended based on the analysis.

Mechanical Properties and Fracture Behavior of Cylindrical Shell Type for Unidirectional CFRP Composite Material under Tension Load (원통형 셀 구조를 갖는 한방향 CFRP 적층 복합재료의 정적인장파괴거동)

  • 오환섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.273-278
    • /
    • 1998
  • In this paper, basic micro-mechanical properties of unidirectional CFRP composite shell such as bonding strength, fiber volume fraction and void fraction are measured and tensile strength test is performed with a fixture. And then fracture surfaces are observed by SEM. In case of basic micro-mechanical properties, bonding strength is reduce with decreasing of radius of each ply in a shell for the effect of residual stress, fiber volume fraction is smaller than plate, and void fraction is vise versa. For these reason, tensile strength of shell is smaller than plate fabricated with same prepreg. For failure mode shell has many splitted part along its length, and it is assumed that this phenomenon is caused by the difference of bonding strength for residual stress.

  • PDF

An Investigation of Fracture Mechanism of Spheroidal Graphite Cast Iron by Acoustic Emission Method (AE방법에 의한 구상화흑연(球狀化黑鉛) 주철재의 파괴기구 구명(究明))

  • Kim, S.C.;Ham, K.C.;Oh, B.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.6 no.2
    • /
    • pp.17-36
    • /
    • 1987
  • In this experimental research, fracture mechanisms of spheroidal graphite cast iron (As Cast, annealed and normalized) were investigated by using Acoustic Emission (AE) technique. In this study, the data (AE signal) are digitized and processed with the 8 bits micro-computer (APPLE II) connected to the AE measuring device without data processing unit. The source of AE signal was estimated by fractography analysis. The results obtained in this experimental study are summarized as follows : For the heterogeneous materials (spheroidal graphite cast iron) with inclusions which may considered as cracks, it is found that low and high AE amplitude appear simultaneously and the load is found to be fluctuated in the final stage of deformation. But the lad is not fluctuated in tension test with low AE amplitude only. AE is measured within elastic region and it is confirmed that 0.2% offset yield load agrees approximately with the load point where AE counts decrease steeply after the point of maximum AE counts.

  • PDF

Behavior of Fatigue Crack at Interface and Around Interface for friction Welded Dissimilar Materials (이종마찰압접재의 접합계면 및 계면근방에서의 피로균열거동)

  • 오환섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.287-292
    • /
    • 1998
  • In this study behavior of fatigue crack and fatigue fracture is observed under rotary bending fatigue testing in friction welded dissimilar materials. Fatigue fracture most occurred in SM15C heat affected zone around Interface. In case of fatigue test, stress is reduced the position of fracture gradually moves to the welded Interface. Micro crack of heat affected zone surface on SM15C is observed at any different stress.

  • PDF

A Study on Failure Analysis of Low Pressure Turbine Blade Subject to Fatigue Load (피로하중을 받은 저압 터빈 블레이드의 파손해석에 관한 연구)

  • 홍순혁;이동우;조석수;주원식
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.298-304
    • /
    • 2001
  • Turbine blade is subject to force of three types ; the torsional force by torsional mount, the centrifugal force by the rotation of rotor and the cyclic bending force by steam pressure. The cyclic bending force was a main factor on fatigue strength. SEM fractography in root of turbine blade showed micro-clack width was not dependent on stress intensity factor range. Especially, fatigue did not exist on SEM photograph in root of turbine blade. To clear out the fracture mechanism of turbine blade, nanofractography was needed on 3-dimensional crack initiation and crack growth with high magnification. Fatigue striation partially existed on AFM photograph in root of turbine blade. Therefore, to find a fracture mechanism of the torsion-mounted blade in nuclear power plant, the relation between stress intensity factor range and surface roughness measured by AFM was estimated, and then the load amplitude ΔP applied to turbine blade was predicted exactly by root mean square roughness.

  • PDF

構造材料의 破壞 및 機能과 設計 (III) (파양과 Fractography)

  • 송삼홍
    • Journal of the KSME
    • /
    • v.19 no.3
    • /
    • pp.190-196
    • /
    • 1979
  • 본 강좌에서는 강도와 밀접한 관계를 가지고 있는 파양문제에 대하여, 특히 파괴된 파단면을 중심으로 기초적인 일반사항을 기술해 보고져한다. 그 내용으로는 파괴와 Fractograph, 전자현 미경과 Peplica 법, Shadowing의 유효성, 파괴의 종류와 Fractograph의 일열 및 파단면형성에 관한 기구등이다. 물체가 파괴된다고 하는 것은 외력을 가하면 물체가 2개로 나누어진다는 단 순한 현상이라고 생각되기 쉽지만, 실제로는 물체가 왜, 이렇게 파괴되는가에 대해서는 알 수 없는 것이 대단히 많다. 고체가 2개로 분리되는 macro 현상은 원자배열이나 응집력등과 같은 micro적인 것에 기인하는 복잡한 것들이 있다. 이미 여러분들이 아는 바와같이, 구조물이나 기 계의 파괴는 돌이킬 수 없는 사고에 이르기 쉽다. 작은 부품 1개의 파괴라던지, 강판의 흠이 원 인이 되어 항공기나 선박등의 사고가 생기는 경우가 있다. 금후에는 원자로나 핵융합반응장치 등이 인류의 에너지원으로서 많이 이용될 가능성이 있지만, 파괴사고가 허용되어서는 안된다. 과학기술의 진보와 더불어, 기계 및 구조물에는 보다 가한 재료가 요구되고, 개발되어가고 있다. 따라서 충분히 안전하게 설계되어 있다고 생각할 수 있는 구조라 하더라도 재료내부의 결함을 기점으로 하여 가끔 파괴가 일어남은 부인하지 못할 사실이다.

  • PDF

Failure analyses of friction welded Al/Cu joints (Al/Cu 마찰용접부의 파단분석)

  • 박재현;권영각;장래웅
    • Journal of Welding and Joining
    • /
    • v.12 no.1
    • /
    • pp.80-93
    • /
    • 1994
  • The microstructure and fractography of the friction welded joint of Al to Cu have been investigated in order to understand the formation of intermetallic compounds and their effects on the failure in tensile test of the joint. The variation of welding pressure did not affect significantly the tensile strength of joint. However, the tensile strength of joint decreaed as welding time increased. The thickness of reaction layers of welded joints was several micro-meters and mainly composed of intermetallic compounds of $CuAl_2$, $Cu_9Al_4$ and Al+$CuAl_2$. The thickness of $CuAl_2$, $Cu_9Al_4$ was increased with welding time. However, $CuAl_2$ was gradually changed to $Cu_9Al_4$ which caused the decrease of tensile strength . Even though the morphology of fractured surfaces depended upon the welding time, the failure occurred along $CuAl_2$ intermetallic compound itself or between $CuAl_2$ and $Cu_9Al_4$ in most cases.

  • PDF