• Title/Summary/Keyword: Micro-Fluidic Flow

Search Result 30, Processing Time 0.023 seconds

Advanced Flow Visualization Technologies and Blue Ocean Strategy (첨단 유동가시화 기법들과 Blue Ocean 전략)

  • Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.2
    • /
    • pp.3-5
    • /
    • 2006
  • Recently, the next-generation advanced flow visualization techniques such as holographic PIV, aynni.c PIV, echo-PIV, micro/nano-PIV, and X-ray PIV have been introduced. These advanced mea-surement techniques have a big potential as the core technology for analyzing outmost thermo-fluid flows in future. They would be indispensable in solving complicated thermo-fluid flow problems not only in industrial fields such as automotive, space, electronics, aero- and hydro-dynamics. steel, and information engineering, but also in the research fields of medical science, bio-medical engineering, environmental and energy technology etc. Especially, NT (Nano Technology) and BT (Bio Technology) strongly demand these advanced measurement techniques, because it is impossible for conventional measurement methods to observe the nano- and bio-fluidic flow phenomena. In this article, the basic principle of these high-tech flow visualization techniques and their practical applications which cannot be resolved by conventional methods, such as blood flows in a micro-tube, in vivo analysis of micro-circulation, and flow around a living body are introduced as a blue ocean strategy.

  • PDF

Development of Stereoscopic Micro-PTV Method (Stereoscopic micro-PTV기법의 개발)

  • Yu, Cheong-Hwan;Kim, Hyoung-Bum
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.109-113
    • /
    • 2007
  • Micro-PIV is a well-known method for measurement of two- dimensional, two-component velocity in the microfluidic devices. Lots of the micro fluidic devices generate three-dimensional flow and 3D measurement of velocity is helpful to understand the physics of micro flow phenomena. In this study, we developed new micro 3D measurement method by applying 2-frame PTV in stereoscopic micro system. In this study, we did the validation study of SMPTV by using the simulated flow model to verify the accuracy and the feasibility of measurement and compared with SMPIV method. The results showed that SMPTV provides better spatial resolution and measurement accuracy than SMPIV method.

  • PDF

Advanced Flow Visualization Technologies and Blue Ocean Strategy (첨단 유동가시화 기법들과 Blue Ocean 전략)

  • Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.145-146
    • /
    • 2006
  • Recently, the next-generation advanced flow visualization techniques such as holographic PIV, dynamic PIV, echo-PIV, micro/nano-PIV, and X-ray PIV have been introduced. These advanced measurement techniques have a big potential as the core technology for analyzing outmost thermo-fluid flows in future. These would be indispensable in solving complicated thermo-fluid flow problems not only in the industrial fields such as automotive, space, electronics, aero- and hydro-dynamics, steel, and information engineering, but also in the research fields of medical science, bio-medical engineering, environmental and energy engineering etc. Especially, NT (Nano Technology) and BT (Bio Technology) strongly demand these advanced measurement techniques, because it is impossible for conventional measurement methods to observe most complicated nano- and bio-fluidic phenomena. In this presentation, the basic principle of these high-tech flow visualization techniques and their practical applications which cannot be resolved by conventional methods, such as blood flows in a micro-tube, in vivo analysis of micro-circulation, and flow around a living body will be introduced as a blue ocean strategy.

  • PDF

A Numerical Study of Heat transfer and Flow Analysis for a Micro-channel in The Slip Flow Regime (Slip flow 영역에서의 미소채널 내 열전달 및 유동에 관한 수치적 연구)

  • Jeong, Soo-In;Kim, Kui-Soon;Kang, Boem-Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.391-394
    • /
    • 2006
  • In this paper, the thermal lattice Boltzmann method(TLBM) proposed by Guo et al.(2002) is applied to analyze the forced convective flow and heat transfer of 2-D micro channel. Nonequilibrium extrapolation boundary condition is adopted to simulate the velocity and temperature behavior at wall boundaries. Numerical results obtained by the present study give a good prediction of the micro fluidic characteristics with thermal effects.

  • PDF

Numerical Analysis of Low-Speed Flows in Micro-Channels (마이크로채널 내부의 저속 유동장 수치해석)

  • Chung C. H.
    • Journal of computational fluids engineering
    • /
    • v.9 no.2
    • /
    • pp.36-42
    • /
    • 2004
  • Low-speed gas flows in micro-channels are investigated using a kinetic theory analysis. The Boltzmann equation simplified by a collision model is solved by means of a finite difference approximation with the discrete ordinate method. Calculations are made for flows in simple micro-channels and a micro-fluidic system consisting of two micro-channels in series. The results are compared well with those from the DSMC method and an analytical solutions to the Wavier-Stokes equations. It is shown that the present method is a useful tool for the modeling of low-speed flows in micro-channels.

A Numerical Study on the Flow and Performance Characteristics of a Piezoelectric Micropump with Electromagnetic Resistance for Electrically Conducting Fluids (전자기 전항을 이용한 압전 구동방식 마이크로 펌프의 유동 및 성능 특성에 관한 수치해석적 연구)

  • An, Yong-Jun;Choi, Chung-Ryul;Kim, Chang-Nyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2788-2793
    • /
    • 2008
  • A numerical analysis has been conducted for flow characteristics and performance of a micropump with piezodisk and MHD(Magnetohydrodynamics) fluid. Various micro systems which could not be considered in the past have been recently growing with the development of MEMS(Micro Electro Mechanical System) and micro machining technology. Especially, micropumps, essential part of micro fluidic devices, are being lively studies by many researchers. In the present study, the piezo electric micropump with electromagnetic resistance for electrically conducting fluids is considered. The prescribed grid deformation method is used for the displacement of the membrane. The change of the performance of the micropump and flow characteristics of the electrically conducting fluid with the magnitude of the magnetic fields, duct size, the position of the inlet and outlet duct are investigated in the present study.

  • PDF

A Study on the Passive Microvalve Applicable to Drainage Device for Glaucoma

  • Sim, Tae-Seok;Kim, Yong-Kweon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.4
    • /
    • pp.253-258
    • /
    • 2002
  • This paper reports the design, modeling, fabrication and measurement of passive microvalves, which are applicable to glaucoma implants. The proposed microvalves were designed using fluidic theory. The microvalves consisted of microchannels and chambers. The microchannels had a constant fluidic resistance generating a pressure difference. Six kinds of microvalves were designed using fluidic equations for laminar flow and fabricated to examine the influences of chamber size, channel length and the shape of channel cross section. The pressure difference between the designed microvalve and the fabricated microvalve was measured to be less than 4%.

Development of electroosmotic flow control technique in micro fluidic devices (전기 삼투를 이용한 미세 유체 소자에서의 유량 제어 기술 개발)

  • Choi, Eun-Soo;Jeong, Dae-Joong;Sim, Won-Chul;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1991-1993
    • /
    • 2002
  • This paper presents the PDMS surface characteristic change after the plasma process and the electroosmotic flow control technique for the two-dimensional focusing in the micro channels made of PDMS and glass. The channels are fabricated by plastic molding and micromachining technique. To observe the surface characteristic change as time elapses, we measure the contact angle of water on the surface and the velocity of the electroosmotic flow in a channel. The electric field adequate for focusing of a core flow in a confluence channel is obtained by the experiment. The computer simulation is performed to obtain the width and the depth of the core flow for several junction angles of the confluence channel.

  • PDF

Fabrication and Simulation of Fluid Wing Structure for Microfluidic Blood Plasma Separation

  • Choe, Jeongun;Park, Jiyun;Lee, Jihye;Yeo, Jong-Souk
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.196-202
    • /
    • 2015
  • Human blood consists of 55% of plasma and 45% of blood cells such as white blood cell (WBC) and red blood cell (RBC). In plasma, there are many kinds of promising biomarkers, which can be used for the diagnosis of various diseases and biological analysis. For diagnostic tools such as a lab-on-a-chip (LOC), blood plasma separation is a fundamental step for accomplishing a high performance in the detection of a disease. Highly efficient separators can increase the sensitivity and selectivity of biosensors and reduce diagnostic time. In order to achieve a higher yield in blood plasma separation, we propose a novel fluid wing structure that is optimized by COMSOL simulations by varying the fluidic channel width and the angle of the bifurcation. The fluid wing structure is inspired by the inertial particle separator system in helicopters where sand particles are prevented from following the air flow to an engine. The structure is ameliorated in order to satisfy biological and fluidic requirements at the micro scale to achieve high plasma yield and separation efficiency. In this study, we fabricated the fluid wing structure for the efficient microfluidic blood plasma separation. The high plasma yield of 67% is achieved with a channel width of $20{\mu}m$ in the fabricated fluidic chip and the result was not affected by the angle of the bifurcation.

EXPERIMENTS FOR VALIDATING NUMERICAL ANALYSIS USING ADVANCED FLOW VISUALIZATION TECHNOLOGIES (첨단 유동가시화 기술을 이용한 수치해석 검증용 실험)

  • Lee, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.14-17
    • /
    • 2008
  • Recently, several advanced flow visualization techniques such as Particle Image Velocimetry (PIV) including stereo PIV, holographic PIV, and dynamic PIV have been developed. These advanced techniques have strong potential as the experimental technology which can be used for verifying numerical simulation. In addition, there would be indispensable in solving complicated thermo-fluid flow problems not only in the industrial fields such as automotive, space, electronics, aero- and hydro-dynamics, steel, and information engineering, but also in the basic research fields of medical science, bio-medical engineering, environmental and energy engineering etc. Especially, NT Nano Technology) and BT (Bio Technology) strongly demand these advanced measurement techniques, because it is difficult for conventional methods to observe most complicated nano- and bio-fluidic phenomena. In this paper, the basic principle of these advanced visualization techniques and their practical applications which cannot be resolved by conventional methods, such as flow in automotive HVAC system, ship and propeller wake, three-dimensional flow measurement in micro-conduits, and flow around a circulating cylinder will be introduced.

  • PDF