• Title/Summary/Keyword: Micro-Fins

Search Result 36, Processing Time 0.02 seconds

Louvered Fin Heat Exchanger : Optimal Design and Numerical Investigation of Heat and Flow Characteristics (루버휜 최적 설계 및 최적 모델의 열유동 특성 분석)

  • Ryu, Kijung;Lee, Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.12
    • /
    • pp.654-659
    • /
    • 2013
  • This paper presents a numerical optimization of louvered fins to enhance the JF factor in terms of the design parameters, including the fin pitch, the number of louvers, the louver angle, the fin thickness, and the re-direction louver length. We carried out a parametric study to select the three most important parameters affecting the JF factor, which were the fin pitch, number of louvers, and the louver angle. We optimally designed the louvered fin by using 3rd-order full factorial design, the kriging method, and a micro genetic algorithm. Consequently, the JF factor of the optimum model increased by 16% compared to that of the base model. Moreover, the optimum model reduced the pressure drop by 17% with a comparable heat transfer rate.

Steam generator performance improvements for integral small modular reactors

  • Ilyas, Muhammad;Aydogan, Fatih
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1669-1679
    • /
    • 2017
  • Background: Steam generator (SG) is one of the significant components in the nuclear steam supply system. A variety of SGs have been designed and used in nuclear reactor systems. Every SG has advantages and disadvantages. A brief account of some of the existing SG designs is presented in this study. A high surface to volume ratio of a SG is required in small modular reactors to occupy the least space. In this paper, performance improvement for SGs of integral small modular reactor is proposed. Aims/Methods: For this purpose, cross-grooved microfins have been incorporated on the inner surface of the helical tube to enhance heat transfer. The primary objective of this work is to investigate thermal-hydraulic behavior of the proposed improvements through modeling in RELAP5-3D. Results and Conclusions: The results are compared with helical-coiled SGs being used in IRIS (International Reactor Innovative and Secure). The results show that the tube length reduces up to 11.56% keeping thermal and hydraulic conditions fixed. In the case of fixed size, the steam outlet temperature increases from 590.1 K to 597.0 K and the capability of power transfer from primary to secondary also increases. However, these advantages are associated with some extra pressure drop, which has to be compensated.

R-22 and R-410A Condensation in Flat Aluminum Multi-Channel Tubes

  • Kim, Nae-Hyun;Min, Chang-Keun;Jung, Ho-Jong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.3
    • /
    • pp.114-124
    • /
    • 2003
  • In this study, condensation heat transfer tests were conducted in flat aluminum multi-channel tubes using R-410A, and the results are compared with those of R-22. The flat tubes have two internal geometries; one with smooth inner surface and the other with micro-fins. Data are presented for the following range of variables; vapor Quality (0.1∼0.9), mass flux (200∼600 kg/$m^2$s) and heat flux (5∼15 kW/$m^2$). Results show that the effect of surface tension drainage on the fin surface is more pronounced for R-22 than R-410A. The smaller Weber number of R-22 may be responsible. For the smooth tube, the heat transfer coefficient of R-410A is slightly larger than that of R-22. For the micro-fin tube, however, the trend is reversed. Possible reason is provided considering physical properties of the refrigerants. For the smooth tube, Webb's correlation predicts the data reasonably well. For the micro-fin tube, the Yang and Webb model was modified to correlate the present data. The modified model adequately predicts the data.

R-22 and R-410A Condensation in Flat Aluminum Multi-Channel Tubes (알루미늄 다채널 평판관내 R-22 및 R-410A 응축에 관한 연구)

  • Jung, Ho-Jong;Kim, Nae-Hyun;Yoon, Baek;Kim, Man-Hoi
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.7
    • /
    • pp.575-583
    • /
    • 2002
  • In this study, condensation heat transfer tests were conducted in flat aluminum multi-channel tubes using R-410A, and the results are compared with those of R-22. Two internal geometries were tested; one with a smooth inner surface and the other with micro-fins. Data are presented for the following range of variables; vapor quality (0.1~0.9), mass flux (200~600 kg/$m^2$s) and heat flux (5~15 ㎾/$m^2$). Results show that the effect of surface tension drainage on the fin surface is more pronounced for R-22 than R-410A. The smaller Weber number for R-22 may be responsible. For the smooth tube, the heat transfer coefficient of R-410A is slightly larger than that of R-22. For the micro-fin tube, however, the reverse is true. Possible reasoning is provided considering the physical properties of the refrigerants. For the smooth tube, a correlation of Akers et at. type predicts the data reasonably well. For the micro-fin tube, the Yang and Webb model was modified to correlate the present data.

Heat Transfer Enhancement from Plain and Micro Finned Surfaces According to Liquid Subcooling (작동유체의 과냉도에 따른 매끈한 표면과 마이크로 핀 표면에서의 열전달 촉진에 관한 연구)

  • Lim, Tae-Woo;You, Sam-Sang;Choi, Hyeung-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1137-1143
    • /
    • 2009
  • Experiments were conducted to evaluate pool boiling heat transfer performance between plain and micro finned surfaces with FC-72, which is chemically and electrically stable. Three kinds of micro fins with the dimension of $100{\mu}m\;{\times}\;10{\mu}m$, $150{\mu}m\;{\times}\;10{\mu}m$ and $200{\mu}m\;{\times}\;10{\mu}m$ (width $\times$ height) were fabricated on the surface of a silicon chip. The experiments were carried out on the liquid subcooling of 5, 10 and 15 K under the atmospheric condition. The micro finned surface with a larger fin width of $200{\mu}m$ provided a better pool boiling heat transfer performance. Also, the micro finned surfaces showed a sharp increase in heat flux with increasing wall superheat and a larger heat transfer enhancement compared to a plain surface.

Study on the Prediction of Pressure Drop for Alternative Refrigerants with lubricant in Micro-Fin Tubes (미세휜관내 윤활유를 포함한 대체냉매의 압력강하 예측에 관한 연구)

  • Choi, Jun-Y.;Lee, Jin-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.83-89
    • /
    • 2000
  • This paper presents a pressure drop correlation for evaporation and condensation of alternative refrigerant with oil in micro-fin tubes. The correlation was developed from a data base consisting of oil-free pure and mixed refrigerants in micro-fin tube; Rl25 R134a. R32 R410a(R32/R125 50/50% mass), R22, R407c(R32/R125/R134a, 23/25/52% mass) and R32/R134a(25/75% mass). The micro-fin tube used in this paper had 60 0.2mm high fins with a 18 helix angle. The cross sectional flow area $(A_c)$ was $60.8 mm^2$ giving an equivalent smooth diameter$(D_e)$ of 8.8mm. The hydraulic diameter $(D_h)$ was estimated to the 5.45mm. The new correlation was obtained by replacing the friction factor and the tube-diameter in Bo Pierre correlation by a friction factor derived from pressure drop data for a micro-fin tube and the hydraulic diameter, respectively. This correlation was also used to predict some pressure data with a lubricant after using a mixing viscosity rule of lubricants and refrigerants. As a result, the new correlation was also well predicted to the measured data within a mean deviation of 19.0%.

  • PDF

Thermal Performance Test of Liquid Cooling Type Cold Plates for Robot Cooling (로봇 냉각을 위한 수냉식 냉각판의 열적 성능 평가)

  • Karng, Sanrng-Woo;Lee, Suk-Won;Hwang, Kyu-Dae;Kim, Seo-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1864-1869
    • /
    • 2007
  • In this study, we compare thermal performance between four different types of cold plates for humanoid robot cooling. Two commercially available cold plates made of copper have different dimensions and internal flow paths: One has $20{\times}20$ $mm^2$ base area with micro-channels and the other has $62.5{\times}62.5$ $mm^2$ base area with 85 round pin-fins. And two different types of cold plates of $20{\times}20$ $mm^2$ base area with 7 mm high are made of PC (polycarbonate), which aims to reduce the weight of cooling system. All cold plates are mounted on a $20{\times}20$ $mm^2$ copper block with two cartridge heaters of 30 $W/cm^2$. The overall heat transfer coefficient and thermal resistances for the liquid-cooled cold plates are obtained. The copper cold plate with micro-channels showed the best performance. Polycarbonate cold plates display fairly good thermal performance with more reduced system weight.

  • PDF

Heat transfer with geometric shape of micro-fin tubes (II) -Evaporating heat transfer- (마이크로핀 관의 기하학적 형상면화에 대한 열전달 특성(II) -증발 열전달-)

  • Kwak, Kyung-Min;Jang, Jae-Sik;Bae, Chul-Ho;Jung, Mo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.789-798
    • /
    • 1999
  • The evaporating heat transfer experiments with refrigerant HCFC 22 are performed for performance evaluation using 4 and 6 kinds of microfin tubes with outer diameter of 9.52mm and 7.0mm, respectively. Used microfin tubes have different shape and number of fins with each other, The experimental results are represented with effects of quality, mass flux and EPR. The evaporating heat transfer characteristics are represented by the existence of not only heat transfer area and turbulence promotion effect but also additional other enhancement mechanism, which are the overflow of the refrigerant over the microfin and microfin arrangement. Microfin tubes having a shape which can give much overflow over the microfin show large evaporating heat transfer coefficients. The effect of refrigerant overflow is much severe in evaporation than condensation. The effect of microfin arrangement is related to overflow effect of the refrigerant over the microfin.

  • PDF

Heat transfer with geometric shape of micro-fin tubes (I) - Condensing heat transfer - (마이크로핀 관의 기하학적 형상변화에 대한 열전달 특성 (I) - 응축 열전달 -)

  • Kwak, Kyung-Min;Jang, Jae-Sik;Bae, Chul-Ho;Jung, Mo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.774-788
    • /
    • 1999
  • To examine the enhancement mechanism of condensing heat transfer through microfin tube, the condensation experiments with refrigerant HCFC 22 are performed using 4 and 6 kinds of microfin tubes with outer diameter of 9.52mm and 7.0mm, respectively. Used microfin tubes have different shape and number of fins with each other The main heat transfer enhancement mechanism is known to be the enlargement of heat transfer area and turbulence promotion. Together with these main factors, we can find other enhancement factors by the experimental data, which are the overflow of the refrigerant over the microfin and microfin arrangement. The overflow of the refrigerant over the microfin can be analyzed by the geometric shape of the microfin. Microfin tubes having a shape which can give much overflow over the microfin show large condensing heat transfer coefficients. The effect of microfin arrangement is related to the heat transfer resistance of liquid film of refrigerant. The condensing heat transfer coefficients are high for the microfin tube with even distribution of liquid film.

  • PDF

A Genetic Marker Associated with Resistance to Lymphocystis Disease in the Olive Flounder, Paralichthys olivaceus (넙치 Lymphocystis 바이러스 질병 내성 유전자 Marker)

  • Kang, Jung-Ha;Nam, Bo-Hae;Han, Hyon-Sob;Lee, Sang-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.3
    • /
    • pp.128-132
    • /
    • 2007
  • We identified a microsatellite marker, Poli121TUF, which appears to be significantly linked (P<0.001) with a lymphocystis disease virus (LCDV)-resistance gene in the olive flounder, Paralichthys olivaceus. The olive flounder is an economically important food fish, that is widely cultured in Korea, Japan, and China. Lymphocystis disease has spread in these countries and has seriously reduced the economic value of the fish. LCDV causes lymphocystis cells (LC) to form on the body surface, fins, gills, mouth, and intestine. Fish with LC lose commercial value due to their deformed appearance. The identified micro satellite marker can be used as a candidate locus for marker-assisted selection (MAS) in order to enhance the efficiency of selection for LCDV resistance in the olive flounder.