• Title/Summary/Keyword: Micro-Finite Element Analysis

Search Result 412, Processing Time 0.03 seconds

A Study of the Micro Stepping Motor Structure for Torque Improvement (토크 향상을 위한 마이크로 스테핑 모터의 구조에 관한 연구)

  • Rhyu, Se-Hyun;Kwon, Byung-Il;Jung, In-Soung;Sung, Ha-Gyeong
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.6-8
    • /
    • 2004
  • Recently, the PM type stepping motor preferred solution for many small electronics position determination devices since it is small in size. Thus, there are glowing demands for permanent magnet(PM) type stepping motor that greater mechanical output, smaller size. This paper deals with a study of the miniaturization of the PM type stepping motor with claw-poles. We introduced the small-sized PM type stopping motor that has new structure and analyzed the magnetic characteristic of it versus general type model using 3-D finite element analysis(FEA).

  • PDF

A Study on the Development of Cathode-Ray Tube Die Using Hot forging (열간단조를 이용한 브라운관 금형의 개발에 관한 연구)

  • 차도진;조종래;배원병;황남철
    • Transactions of Materials Processing
    • /
    • v.9 no.5
    • /
    • pp.533-538
    • /
    • 2000
  • This study has been carried out to develop a CRT die using hot forging. The conventional CRT die made by casting has defects such as void and inclusion. These defects of the cast die make micro-spots on the surface of the CRT which affect the quality of the final product. So, a hot forging process is developed to avoid these defects of CRT die by the model material test and the rigid-plastic FEM. Firstly, model material tests are carried out with plasticine billets in order to investigate the material flow pattern in the die cavity and to get the reasonable initial values for designing the preform in the FE simulation. And then a finite element analysis has been performed to Predict the preform and the forging load of a CRT die. We also suggest an integrated die-set which combines two die-sets into one die-set to save manufacturing time and cost in case of similar die-size.

  • PDF

Analytic Expectation of Carbonation Depth of Indoor Concrete According to CO2 Concentration (건축물 실내 CO2 농도 분포에 따른 콘크리트 탄산화 깊이 산정에 관한 연구)

  • Park, Dong-Cheon;Park, Kun-Suok;Ahn, Jae-Cheol;Kang, Byung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.231-233
    • /
    • 2011
  • Carbon dioxide in atmosphere causes concrete carbonation which is the phenomenon, that is, the pH of concrete changes from 12-13 to 8.85-10. Even though the carbon dioxide concentration of indoor is higher than that of outdoor, the micro measurement has not carried out. The concentration of carbon dioxide was measured in three places. The data was used as boundary condition to FEM analysis for expectation of concrete carbonation depth. The affect of building finish materials to concrete carbonation was discussed.

  • PDF

A piezoelectric pump using extensional vibration of lateral surface by traveling wave (진행파 여진에 의한 굴곡 신축진동을 이용하는 압전 펌프)

  • Oh, Jin-Heon;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.322-322
    • /
    • 2010
  • In this paper, we propose a novel type valveless micro-pump that uses extensional vibration mode of traveling wave as a volume transporting means for solving some problems about check valves, essential parts of usual pumps. The proposed pump consists of two piezoelectric ceramic rings and a metal body located in the middle of them respectively. Because the drift of bended surface that results from the traveling wave excitation controls the fluid flow, check valves are not needed in this pump model. In accordance with the variation of the pump body dimension, we analyzed the vibration displacement characteristics of pump model, determined the optimal design condition, fabricated the prototype pump from the analysis results and evaluated its efficiency.

  • PDF

Numerical Analysis of Cyclic Deformation of Polymer Foam Film Using Stretched Truncated Octahedron Model (모서리가 제거된 팔면체 인장모델을 이용한 다공성 폴리머 박막의 반복변형거동 수치해석)

  • Yoo, Ui-Kyung;Lee, Young-Seog
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.104-110
    • /
    • 2010
  • Cyclic deformations of polymer foam film are simulated using the finite element method. Material of polymer foam film is polypropylene (PP). The calculated polymer foam film is micro-scale thin film has cellular structure. The polymer foam film is used in ferro-electret applications. The polymer foam film is idealized to one cell structure as lens shaped stretched truncated octahedron model. Cyclic deformation is performed by uniaxial stretching. Stretching direction is perpendicular to plane of cellular film. Various cyclic strain amplitudes, pore wall thicknesses, pore shape are investigated to find deformation tendency of cellular structure. Consequently, cellular structure has various macroscopic stresses on cyclic deformation with various pore thickness and pore shape.

Modeling and Analysis of a Multi Bossed Beam Membrane Sensor for Environmental Applications

  • Arjunan, Nallathambi;Thangavelu, Shanmuganantham
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.25-29
    • /
    • 2017
  • This paper presents a unique pressure sensor design for environmental applications. The design uses a new geometry for a multi bossed beam-membrane structure with a SOI (silicon-on-insulator) substrate and a mechanical transducer. The Intellisuite MEMS CAD design tool was used to build and analyze the structure with FEM (finite element modeling). The working principle of the multi bossed beam structure is explained. FEM calculations show that a sensing diaphragm with Mises stress can provide superior linear response compared to a stress-free diaphragm. These simulation results are validated by comparing the estimated deflection response. The results show that, the sensitivity is enhanced by using both the novel geometry and the SOI substrate.

In-situ Crack Propagation Observation of a Particle Reinforced Polymer Composite Using the Double Cleavage Drilled Compression Specimens

  • Lee Yeon-Soo;Yoon Young-Ki;Jeong Bo-Young;Yoon Hi-Seak
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.310-318
    • /
    • 2006
  • In this study, we investigate the feasibility of in-situ crack propagation by using a double cleavage drilled compression (DCDC) specimen showing a slow crack velocity down to 0.03 mm/s under 0.01 mm/s of displacement control. Finite element analysis predicted that the DCDC specimens would show at least 4.3 fold delayed crack initiation time than conventional tensile fracture specimens under a constant loading speed. Using DCDC specimens, we were able to observe the in-situ crack propagation process in a particle reinforced transparent polymer composite. Our results confirmed that the DCDC specimen would be a good candidate for the in-situ observation of the behavior of particle reinforced composites with slow crack velocity, such as the self-healing process of micro-particle reinforced composites.

An Experimental Approach of Milli-Structure Sheet Metal Forming (미세 박판 성형 특성에 대한 실험적 연구)

  • Ku, T.W.;Kang, B.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.471-476
    • /
    • 2001
  • Milli-structure components ate classified as a component group whose size is between macro and micro scales, that is, about less than 20mm and larger than 1mm. The forming of these components has a typical phenomenon of bulk deformation with thin sheets because of the forming size. In this study, milli-structure rectangular cup drawing is analyzed and measured using the finite element method and experiment. Generally, milli-structure containers or cases like cellular phone vibrator consist of rectangular-shaped drawing to save installation space. A systematic approach is established for the design and the experiment of the forming processes for rectangular milli-structure cases. To verify the simulation results, the experimental investigations were also carried out on a real industrial product. The numerical analysis by FEM shows good agreement with the experimental results in view of the deformation shape of the product.

  • PDF

Analysis of Heat Treatment Process for Large Forgings Considering Phase Transformation (대형 단조품 담금질 과정의 조직 및 응력분포 해석)

  • 이정호;이부윤;전제영;이명렬;조종래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.964-968
    • /
    • 1996
  • The demands of size and quality of large steel shaft forgings for ship building, power plant, steel plant, etc. are rapidly increasing, and some of these productions are manufactured from ingot weighing more than 300 tons. For use as rotating components. shafts require toughness, strength and homogeneity, and therefore are produced through a variety of heat treatments. According to the increase of ingot size, micro- and macrosegregation and also mass effect of the product increase. Thus, special care should be paid to the heat treatment of such large shaft forgings. In this paper, the heat treatment of large shaft forgings such as rotor and back-up roll is calculated using the commercial finite element code SYSWELD. Calculated distributions of temperature and phase are compared with experimental data. The continuous cooling transformation diagram, thermal and mechanical properites of each phase are used. The phase proportion, hardness and residual stress during water quenching are discussed.

  • PDF

Application of Genetic Algorithm to Die Shape Otimization in Extrusion (압출공정중 금형 형상 최적화문제에 대한 유전 알고리즘의 적용)

  • 정제숙;황상무
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.269-280
    • /
    • 1996
  • A new approach to die shape optimal design in extrusion is presented. The approach consists of a FEM analysis model to predict the value of the objective function a design model to relate the die profile with the design variables and a genetic algorithm based optimaization procedure. The approach was described in detail with emphasis on our modified micro genetic algorithm. Comparison with theoretical solutions was made to examine the validity of the predicted optimal die shapes. The approach was then applied to revealing the optimal die shapes with regard to various objective functions including those for which the design sensitivities can not be deter-mined analytically.

  • PDF