• Title/Summary/Keyword: Micro-FE models

Search Result 27, Processing Time 0.028 seconds

The elastic and plastic behaviour of the micro-FE models for vertebral trabecular bones (척추 해면골에 대한 미세 유한요소모델의 탄성 및 소성특성에 관한 연구)

  • 우대곤;김한성;원예연;백명현;탁계래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1320-1323
    • /
    • 2003
  • In this study, the micro-FE analyses were carried out for the plastic behaviour of vertebral trabecular bones. Many researchers have investigated the elastic behaviour of trabecular bones by using the micro-finite element models based on the micro-CT images. However, there was no micro-FE model to account for the plastic behaviour of trabecular bones. Ulrich et at. reported that best results at coarser model were obtained when using 'compensated hexahedron models' with the same relative density. This study indicates that, for the elastic and plastic analysis, 'the compensated hexahedron FE model' is likely to be limited to about 63$\mu\textrm{m}$ image resolution in the vertebra trabecular bones.

  • PDF

The Mechanical Characteristics of Osteoporotic Vertebral Trabecular Bone Models and its Hormone Treatment Models using 3D Micro-FE Analysis (3 차원 미세 유한요소모델을 이용한 골다공증 해면골과 호르몬 치료 모델의 기계적 특성 분석)

  • 우대곤;김한성;유용석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1278-1281
    • /
    • 2004
  • Several workers reported the relationship between osteoporosis and age-related reductions in the BV/TV (bone volume fraction) of vertebral trabecular bones. However, there were few micro finite element (micro-FE) models to account for the treatments of the osteoporotic trabecular bone. In the present study, micro-FE models of osteoporotic and hormone-treated bone models were constructed to analyze the effect of specimen location and boundary condition on mechanical characteristics of hormone treatment model for osteoporotic trabecular bone. Top and bottom sections of specimens were also investigated individually to study the effect of specimen location. Hormone-treated models were allowed to have the same relative BV/TV (13.4%) as that used in models of previous researchers. The present study reported the elastic and plastic characteristics of the osteoporosis and hormone-treated bone models. In the present study, in-situ boundary condition was applied to the simulated compression tests for in-vivo condition of vertebral trabecular bone. The present study indicated that the hormone therapy was likely to improve the mechanical characteristics of osteoporotic bones and the mechanical characteristics of vertebral trabecular bone specimen were dependent on the captured location and boundary condition.

  • PDF

Automated FEA Simulation of Micro Motor (마이크로 모터의 자동화된 FEA 시뮬레이션)

  • Lee Joon-Seong
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.3
    • /
    • pp.13-22
    • /
    • 2002
  • This paper describes an automated evaluation of electrostatic field for micro motors whose sizes range 10 to 103um. Electric field modeling in micro motors has been generally restricted to in-plane two-dimensional finite element analysis (FEA). In this paper, the actual three-dimensional geometry of the micro motor is considered. An automatic FE mesh generation technique, which is based on the fuzzy knowledge processing and computational geometry techniques, is incorporated in the system, together with one of commercial FE analysis codes and one of commercial solid modelers. The system allows a geometry model of concern to be automatically converted to different FE models, depending on physical phenomena to be analyzed, electrostatic analysis and stress analysis and so on. The FE models are then exported to the FE analysis code, and then analyses are peformed. Then, analytical analysis and FE analysis about the torque generated by electrostatic micro motor are performed. The starting torque is proportional to $V^2$, the calculated starting torque from the two-dimensional analytical solutions are three times larger than those from the three-dimensional FE solutions.

  • PDF

Automated CAE Evaluation of Electrostatic Micro Actuator (정전 마이크로 액츄에이터의 자동 CAE 평가)

  • Lee, Joon-Seong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.711-715
    • /
    • 1996
  • This paper describes an automated computer-aided engineering (CAE) system for micromachines whose size range 10 to 10$^3$${\mu}{\textrm}{m}$. An automatic finite element mesh generation technique, which is based on the fuzzy knowledge processing and computational geometry techniques, is incorporated into the system, together with one of commercial finite clement (FE) analysis codes, MARC, and one of commercial solid modelers, Designbase. The system allows a geometry model of concern to be a automatically converted to different FE models, depending on physical phenomena to be analyzed, i.e. electrostatic analysis, stress analysis, modal analysis and so on. The FE analysis models are then exported to the FE analysis code, and then analyses are performed. This system is successfully applied to an electrostatic micro actuator.

  • PDF

Automated Simulation System for Micromachines (마이크로머쉰의 자동 시뮬레이션 시스템)

  • Lee, Jun Seong
    • Journal of the Korea Society for Simulation
    • /
    • v.5 no.1
    • /
    • pp.29-29
    • /
    • 1996
  • This paper describes a new automated simulation system for micromachines whose size range $10^{-6}$ to $10^{-3}$ m. An automic finite element (FE) mesh generation technique, which is bases on the fuzzy knowledge processing and computation al geometry technique, is incorporated into the system, together with one of commerical FE analysis codes, MARC, and one of commerical solid modelers, Designbase. The system allows a geometry model of concern to be automatically converted to different FE models, depending on physical phenomena of micromachines to be analyzed, i,e. electrostatic analysis, stress analysis, modal analysis and so on. The FE models are then automatically analyzed using the FE analysis code. Among a whole process of analysis, the definition of a geometry model, the designation of local node patterns and the assignment of material properties and boundary conditions onto the geometry model are only the interactive process to be done by a user. The interactive operations can be processed in a few minutes. The other processes which are time consuming and labour-intensive in conventional CAE systems are fully automatically performed in a popular engineering workstation environment. This automated simulation system is successfully applied to evaluate an electrostatic micro wobble actuator.

Biomechanical Characterization with Inverse FE Model Parameter Estimation: Macro and Micro Applications (유한요소 모델 변수의 역 추정법을 이용한 생체의 물성 규명)

  • Ahn, Bum-Mo;Kim, Yeong-Jin;Shin, Jennifer H.;Kim, Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1202-1208
    • /
    • 2009
  • An inverse finite element (FE) model parameter estimation algorithm can be used to characterize mechanical properties of biological tissues. Using this algorithm, we can consider the influence of material nonlinearity, contact mechanics, complex boundary conditions, and geometrical constraints in the modeling. In this study, biomechanical experiments on macro and micro samples are conducted and characterized with the developed algorithm. Macro scale experiments were performed to measure the force response of porcine livers against mechanical loadings using one-dimensional indentation device. The force response of the human liver cancer cells was also measured by the atomic force microscope (AFM). The mechanical behavior of porcine livers (macro) and human liver cancer cells (micro) were characterized with the algorithm via hyperelastic and linear viscoelastic models. The developed models are suitable for computing accurate reaction force on tools and deformation of biomechanical tissues.

Design of the precision micro-positioning stage (초정밀 마이크로 위치결정 스테이지의 설계)

  • 한창수;김경호;이찬홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.539-542
    • /
    • 1997
  • We present a micro-positioning stage that has minimized geometrical error and can drive in the 4-axis. This stage divided into two parts: $Z\theta_x$ $\theta_y$, motion stage and$\theta_z$ motion stage. These stages are constructed in flexure hinges, piezoelectric actuators and displacement scnsors. The dynamic model for each stage is obtained and their FE (finite element) models are made. Using the Lagrange's equation, the motion of equation is found. Through the parametric analysis and FE analysis, sensitiv~ty of the design parameters is executed. Finally, fundamental frequencies, maximum stress, and displacement sensitivity for each stage are obtained. We expect that this micro-positioning stage be a useful micro-alignment device for various applications.

  • PDF

A FE2 multi-scale implementation for modeling composite materials on distributed architectures

  • Giuntoli, Guido;Aguilar, Jimmy;Vazquez, Mariano;Oller, Sergio;Houzeaux, Guillaume
    • Coupled systems mechanics
    • /
    • v.8 no.2
    • /
    • pp.99-109
    • /
    • 2019
  • This work investigates the accuracy and performance of a $FE^2$ multi-scale implementation used to predict the behavior of composite materials. The equations are formulated assuming the small deformations solid mechanics approach in non-linear material models with hardening plasticity. The uniform strain boundary conditions are applied for the macro-to-micro transitions. A parallel algorithm was implemented in order to solve large engineering problems. The scheme proposed takes advantage of the domain decomposition method at the macro-scale and the coupling between each subdomain with a micro-scale model. The precision of the method is validated with a composite material problem and scalability tests are performed for showing the efficiency.

Automated Simulation System for Micromachines (마이크로머쉰의 자동 시뮬레이션시스템)

  • 이준성
    • Journal of the Korea Society for Simulation
    • /
    • v.5 no.1
    • /
    • pp.28-42
    • /
    • 1996
  • This paper describes a new automated simulation system for micromachines whose size range $10^{-6}$ to $10^{-3}$ m. An automic finite element (FE) mesh generation technique, which is bases on the fuzzy knowledge processing and computation al geometry technique, is incorporated into the system, together with one of commerical FE analysis codes, MARC ,and one of commerical solid modelers, Designbase. The system allows a geometry model of concern to be automatically converted to different FE models, depending on physical phenomena of micromachines to be analyzed , i,e. electrostatic analysis, stress analysis, modal analysis and so on. The FEmodels are then automatically analyzed using the FE analysis code, Among a whole process of analysis, the definition of a geometry model, the designation of local node patterns and the assignment of material properties and boundary conditions onto the geometry model are only the interactive process to be done by a user. The interactive operations can be processed in a few minutes. The other processes which are time consuming and labour-intensive in conventional CAE systems are fully automatically performed in a popular engineering workstation environment. This automated simulation system is successfully applied to evaluate an electrostatic micro wobble actuator.

  • PDF

RC deep beams with unconventional geometries: Experimental and numerical analyses

  • Vieira, Agno Alves;Melo, Guilherme Sales S.A.;Miranda, Antonio C.O.
    • Computers and Concrete
    • /
    • v.26 no.4
    • /
    • pp.351-365
    • /
    • 2020
  • This work presents numerical and experimental analyses of the behavior of reinforced-concrete deep beams with unconventional geometries. The main goal here is to experimentally and numerically study these geometries to find possible new behaviors due to the material nonlinearity of reinforced concrete with complex geometries. Usually, unconventional geometries result from innovative designs; in general, studies of reinforced concrete structures are performed only on conventional members such as beams, columns, and labs. To achieve the goal, four reinforced-concrete deep beams with geometries not addressed in the literature were tested. The models were numerically analyzed with the Adaptive Micro Truss Model (AMTM), which is the proposed method, to address new geometries. This work also studied the main parameters of the constitutive model of concrete based on a statistical analysis of the finite element (FE) results. To estimate the ultimate loads, FE simulations were performed using the Monte Carlo method. Based on the obtained ultimate loads, a probabilistic distribution was created, and the final ultimate loads were computed.