• Title/Summary/Keyword: Micro-Electro-Mechanical Systems

Search Result 175, Processing Time 0.025 seconds

Numerical Visualization of Supersonic Microjet Flows (초음속 마이크로제트 유동의 수치해석적 가시화)

  • Shin, Choon-Sik;Lee, Jong-Sung;Kim, Heuy-Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.2
    • /
    • pp.35-41
    • /
    • 2010
  • Supersonic microjets acquire considerable research interest from a fundamental fluid dynamics perspective, in part because the combination of highly compressible flow at low-to-moderate Reynolds number is not very common, and in part due to the complex nature of the flow itself. In addition, microjets have a great variety engineering applications such as micro-propulsion, MEMS(Micro-Electro Mechanical Systems) components, microjet actuators and fine particle deposition and removal. Numerical simulations have been carried out at moderate nozzle pressure ratios and for different nozzle exit diameters to investigate and to understand in-depth of aerodynamic characteristics of supersonic microjets.

Numerical Investigation of Temperature Uniformity and Estimation Accuracy for MEMS-based Black Body System (MEMS 기반 흑체 시스템의 온도 균일도 및 추정 정확도의 수치 해석적 검토)

  • Chae, Bong-Geon;Kim, Tae-Gyu;Lee, Jong-Kwang;Kang, Suk-joo;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.455-462
    • /
    • 2016
  • Output Characteristics of the spaceborn image sensor such as infrared(IR) sensor are varied according to time elapses and sensor repetition on/off operation. As a result, the quality of IR sensor image is decreased. Therefore, spaceborne image sensor require a periodic calibration using a black body system by correcting a non-uniformity of the sensor. In this paper, we proposed a MEMS-based black body system that can implement the high temperature uniformity at various standard temperatures ranging from low to high temperature and easily estimate the representative surface temperature. In addition, it has advantages lightweight, low-power and high accuracy. The feasibility of the proposed MEMS-based black body system was verified through the thermal analysis.

MEMS RF Switch의 연구동향 및 응용

  • 송인산
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.2
    • /
    • pp.22-32
    • /
    • 2002
  • MEMS(Micro-Electro-Mechanical Systems)는 전기적인 구성요소와 기계적인 구성요소를 작게 조합하여 구성한 소자나 시스템을 말한다. RF(Radio Frequency) MEMS는 MEMS를 이용한 RF 소자나 시스템을 의미하며, 본 고에서는 RF 소자에 대하여 논의하고자 한다. MEMS는 RF 소자의 성능, 기능, 집적화 등을 높여 주고, 크기, 가격, 부피, 전력 소모 등을 낮추어 주므로 소자 개발에 대한 연구는 매우 다양하지만, 본 고에서는 움직이는 소자 중에서 가장 많이 연구되고 있는 mechanical RF switch에 대하여 중점적으로 다루고자 한다. 이에 대한 연구 동향, 특성, 응용 분야 등을 살펴보고, 상품으로서의 가치를 인정 받기 위하여 고려해야 할 점들을 논의 하겠다.

Flow Characteristics in the Converging Mini-Channels (좁아지는 유로에서의 유동 특성)

  • Karng, Sarng-Woo;Kim, Jin-Ho;Lee, Yoon-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1623-1628
    • /
    • 2004
  • Recently mini-channels or micro-channels are widely used for cooling the high density power electronic devices. Especially, the channels are used in small and high efficient equipments such as heat pipes and heat exchangers. Interfacial velocities between liquid and gas phases are very important in mini or micro-channels. In this paper, an experiment and a numerical analysis on the interfacial velocities were performed. In the experiment, the interfacial velocities which were measured by the high-speed CCD camera were about $26{\sim}33$ cm/s and the velocities increased as the inclination angle did. In the numerical experiment, CFD-ACE+, a commercial program, was used, the velocities had similar values with experimental results. As the inclination angle and the contact angle increased, the interfacial velocities did because of the surface tension which causes to move the interface. The effect of inclination angle was larger in the converging channels than in straight channels.

  • PDF

Photolithographic Silicon Patterns with Z-DOL (perfluoropolyether, PFPE) Coating as Tribological Surfaces for Miniaturized Devices

  • Singh, R. Arvind;Pham, Duc-Cuong;Yoon, Eui-Sung
    • KSTLE International Journal
    • /
    • v.9 no.1_2
    • /
    • pp.10-12
    • /
    • 2008
  • Silicon micro-patterns were fabricated on Si (100) wafers using photolithography and DRIE (Deep Reactive Ion Etching) fabrication techniques. The patterned shapes included micro-pillars and micro-channels. After the fabrication of the patterns, the patterned surfaces were chemically modified by coating Z-DOL (perfluoropolyether, PFPE) thin films. The surfaces were then evaluated for their micro-friction behavior in comparison with those of bare Si (100) flat, Z-DOL coated Si (100) flat and uncoated Si patterns. Experimental results showed that the chemically treated (Z-DOL coated) patterned surfaces exhibited the lowest values of coefficient of friction when compared to the rest of the test materials. The results indicate that a combination of both the topographical and chemical modification is very effective in reducing the friction property. Combined surface treatments such as these could be useful for tribological applications in miniaturized devices such as Micro/Nano-Electro-Mechanical-Systems (MEMS/NEMS).

Evaluation of Micro EV's Spreading to Local Community by Multinomial Logit Model

  • Seki, Yoichi;Manrique, Luis C.;Amagai, Kenji;Takarada, Takayuki
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.2
    • /
    • pp.148-154
    • /
    • 2012
  • Micro Electric Vehicles are considered as a solution for reducing $CO_2$ emissions, however, it is difficult to evaluate its impact in a local community when it has been introduced. In this study, we evaluated how to spread the Micro EV within the community, using the utility derived from a multinomial logit model, and analyze the effect on $CO_2$ emissions. The householder's utility model is based on an investigation about Kiryu citizen's activities of shopping, transportation methods, etc. Using the geographic information system, we get the distances of each householder and the stores, and estimate a multinomial logit model about the combination choices of shopping stores and transportation method.

Frequency Characteristics of Micro-cantilever Sensor using Tuning Fork (튜닝포크형 미소 캔틸레버 센서의 주파수 특성)

  • Kim Choong Hyun;Ahn Hyo-Sok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.5
    • /
    • pp.35-40
    • /
    • 2005
  • An experimental Investigation of the basic characteristics of a micro-cantilever sensor was performed by inspecting the amplitude and frequency characteristics of a commercial tuning fork (TF). Application of acetone and ethanol with a volume of $1{\mu}l$ on the tine of a vibrating tuning fork causes immediate response in its amplitude and frequency characteristics. It has been shown that the tuning fork has ability to recognize a chemical agent with high sensitivity. The theoretical sensitivity of mass loading is in the range of $\~0.1Hz/ng$. Quartz tuning forks are routinely made using standard microfabrication process, thus suggesting the possibility of microfabrication of micro quart sensors.

Dual Surface Modifications of Silicon Surfaces for Tribological Application in MEMS

  • Pham, Duc-Cuong;Singh, R. Arvind;Yoon, Eui-Sung
    • KSTLE International Journal
    • /
    • v.8 no.2
    • /
    • pp.26-28
    • /
    • 2007
  • Si(100) surfaces were topographically modified i.e. the surfaces were patterned at micro-scale using photolithography and DRIE (Deep Reactive Ion Etching) fabrication techniques. The patterned shapes included micro-pillars and microchannels. After the fabrication of the patterns, the patterned surfaces were chemically modified by coating a thin DLC film. The surfaces were then evaluated for their friction behavior at micro-scale in comparison with those of bare Si(100) flat, DLC coated Si(100) flat and uncoated patterned surfaces. Experimental results showed that the chemically treated (DLC coated) patterned surfaces exhibited the lowest values of coefficient of friction when compared to the rest of the surfaces. This indicates that a combination of both the topographical and chemical modification is very effective in reducing the friction property. Combined surface treatments such as these could be useful for tribological applications in miniaturized devices such as Micro-Electro-Mechanical-Systems (MEMS).

Micro Mechanical Engineering in Micro Electro Mechanical Systems (미소기전집적시스템에서의 미소기계공학)

  • 조영호
    • Journal of the KSME
    • /
    • v.33 no.6
    • /
    • pp.552-570
    • /
    • 1993
  • 이 글에서는 마이크로머신 특성을 응용한 제품들과 이에 내포된 기반기술 및 관련 연구분야를 소개하고자 한다. 먼저 세부기술과 연구과제를 언급하기에 앞서, 마이크로머신 기술의 배경과특 성을 소개하고, 기존 기술들과의 비교 . 연계를 통해 기술 공간상에서의 마이크로머신 기술의 좌표를 제시하고자 한다. 그 이후 본론에 들어가서, 마이크로머신 관련기술 및 연구분야를 다음과 같이 크게 두 가지 관점에서 정리하여 소개한다. 먼저 산업분야별 응용제품 및 기술적용 예를 통하여 '제품기술' 관점에서 마이크로머신 기술을 조명한 후, 이러한 제품기술의 근간이 되는 연구 분야별 관련기술의 소개를 통하여 '기반기술' 측면에서 마이크로머신기술을 정리하고자 한다. 특히 후반부 마이크로머신 기반 기술부분에서는 마이크로머신의 설계, 해석, 제작과 관련된 기술과제 중 비교적 기계공학분야와 연관이 있는 부분을 중점적으로 다루었다. 끝으로, 제품 기 술로서의 마이크로머신기술의 현황 기술로서의 당면 과제 등을 조명하고, 관련기술의 성숙요건을 제시해본다.

  • PDF

Micro forming technology for micro parts below $500{\mu}m$ in diameter by n hot extrusion process (열간 압출 공정에 의한 직경 $500{\mu}m$ 마이크로 부품 성형)

  • Lee, K.H.;Lee, S.J.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.417-420
    • /
    • 2007
  • Micro parts are usually used of producing by micro-electro-mechanical systems(MEMS). In this paper, we present some fundamental results concerning on the MEMS, extrusion condition on the micro forming characteristics and new micro forward extrusion machine has been developed. In the first step, we manufactured micro dies in two kinds of sections. One is a circle section, another is a cross section. The process for fabricating micro dies combines a deep UV-lithography, anisotropic etching techniques and metal electroplating with bulk silicon based on Ni with a thickness of $50{\mu}m$. The outer diameter of Ni-micro dies is 3mm and the diameter of extrusion section is $270{\mu}m$ for a cross section, $500{\mu}m$ for a circle section. The low linear density polyethylene(LLEPD) in the shape of a pellet has been used of micro extrusion. The billet was placed in a container manufactured by electric discharge machining and extruded through the micro die by a piezoelectric actuator. The micro extrusion has succeeded in a forming such micro parts as micro bars, micro cross shafts.

  • PDF