• 제목/요약/키워드: Micro-Electro-Mechanical Systems

검색결과 175건 처리시간 0.028초

Buckling treatment of piezoelectric functionally graded graphene platelets micro plates

  • Abbaspour, Fatemeh;Arvin, Hadi
    • Steel and Composite Structures
    • /
    • 제38권3호
    • /
    • pp.337-353
    • /
    • 2021
  • Micro-electro-mechanical systems (MEMS) are widely employed in sensors, biomedical devices, optic sectors, and micro-accelerometers. New reinforcement materials such as carbon nanotubes as well as graphene platelets provide stiffer structures with controllable mechanical specifications by changing the graphene platelet features. This paper deals with buckling analyses of functionally graded graphene platelets micro plates with two piezoelectric layers subjected to external applied voltage. Governing equations are based on Kirchhoff plate theory assumptions beside the modified couple stress theory to incorporate the micro scale influences. A uniform temperature change and external electric field are regarded along the micro plate thickness. Moreover, an external in-plane mechanical load is uniformly distributed along the micro plate edges. The Hamilton's principle is employed to extract the governing equations. The material properties of each composite layer reinforced with graphene platelets of the considered micro plate are evaluated by the Halpin-Tsai micromechanical model. The governing equations are solved by the Navier's approach for the case of simply-supported boundary condition. The effects of the external applied voltage, the material length scale parameter, the thickness of the piezoelectric layers, the side, the length and the weight fraction of the graphene platelets as well as the graphene platelets distribution pattern on the critical buckling temperature change and on the critical buckling in-plane load are investigated. The outcomes illustrate the reduction of the thermal buckling strength independent of the graphene platelets distribution pattern while meanwhile the mechanical buckling strength is promoted. Furthermore, a negative voltage, -50 Volt, strengthens the micro plate stability against the thermal buckling occurrence about 9% while a positive voltage, 50 Volt, decreases the critical buckling load about 9% independent of the graphene platelet distribution pattern.

Simplified Design and Optimization of Slotless Brushless DC Machine for Micro-Satellites Electro-Mechanical Batteries

  • Abdi, Babak;Bahrami, Hamid;Mirtalaei, S.M.M.
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.124-129
    • /
    • 2013
  • Electro-Mechanical Batteries have important advantages compared with chemical batteries, especially in Low Earth Orbit satellites applications. High speed, slotless, external rotor, brushless DC machines are proposed and used in these systems as Motor/Generator. A simplified analytic design method is given for this type of machines and, the optimization of machine in order to have maximum efficiency and minimum volume and weight are given in this paper. Particle swarm optimization (PSO) is used as the optimization algorithm and the finite element-based simulations are used to confirm the design and optimization process and show less than 6% error in parametric design.

Improvement of a Low Cost MEMS-based GPS/INS, Micro-GAIA

  • Fujiwara, Takeshi;Tsujii, Toshiaki;Tomita, Hiroshi;Harigae, Masatoshi
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.265-270
    • /
    • 2006
  • Recently, inertial sensors like gyros and accelerometers have been quite miniaturized by Micro Electro-Mechanical Systems (MEMS) technology. JAXA is developing a MEM-based GPS/INS hybrid navigation system named Micro-GAIA. The navigation performance of Micro-GAIA was evaluated through off-line analysis by using flight test data. The estimation errors of the roll, pitch, and azimuth were $0.03^{\circ}$, $0.05^{\circ}$, $0.05^{\circ}$ $(1{\sigma})$, respectively. he horizontal position errors after 60-second GPS outages were reduced to 25 m CEP. The attitude errors and position errors are nearly half of ones reported previously[2]. Furthermore, using the adaptive Kalman filters, the robustness against the uncertainty of the measurement noise was improved. Comparing the innovation-based and residual-based adaptive Kalman filters, it was confirmed that the latter is robuster than the former.

  • PDF

초정밀 시스템의 내구성 향상을 위한 다이아몬드상 탄소 박막의 마멸특성에 관한 연구 (Wear Characteristics of Diamond-Like Carbon Thin Film for Durability Enhancement of Ultra-precision Systems)

  • 박관우;나종주;김대은
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.467-470
    • /
    • 2004
  • Diamond-Like Carbon (DLC) thin film is a semiconductor with high mechanical hardness, low friction coefficient, high chemical inertness, and optical transparency. DLC thin films have widespread applications as protective coatings and solid lubricant coatings in areas such as Hard Disk Drive (HDD) and Micro-Electro-Mechanical-Systems (MEMS). In this work, the wear characteristics of DLC thin films deposited on silicon substrates using a DC-magnetron sputtering system were analyzed. The wear tracks were measured with an Atomic Force Microscope (AFM). To identify the sp2 and sp3 hybridization of carbon bonds and other bonds Raman spectroscopy was used. The structural information of DLC thin films was obtained with Fourier transform infrared spectroscopy and wear tests were conducted by using a micro-pin-on-reciprocator tester. Results showed that the wear characteristics were dependent on the sputtering conditions. The wear rate could be correlated with the bonding state of the DLC thin film.

  • PDF

Detection and Quantification of Screw-Home Movement Using Nine-Axis Inertial Sensors

  • Jeon, Jeong Woo;Lee, Dong Yeop;Yu, Jae Ho;Kim, Jin Seop;Hong, Jiheon
    • The Journal of Korean Physical Therapy
    • /
    • 제31권6호
    • /
    • pp.333-338
    • /
    • 2019
  • Purpose: Although previous studies on the screw-home movement (SHM) for autopsy specimen and walking of living persons conducted, the possibility of acquiring SHM based on inertial measurement units received little attention. This study aimed to investigate the possibility of measuring SHM for the non-weighted bearing using a micro-electro-mechanical system-based wearable motion capture system (MEMSS). Methods: MEMSS and camera-based motion analysis systems were used to obtain kinematic data of the knee joint. The knee joint moved from the flexion position to a fully extended position and then back to the start point. The coefficient of multiple correlation and the difference in the range of motion were used to assess the waveform similarity in the movement measured by two measurement systems. Results: The waveform similarity in the sagittal plane was excellent and the in the transverse plane was good. Significant differences were found in the sagittal plane between the two systems (p<0.05). However, there was no significant difference in the transverse plane between the two systems (p>0.05). Conclusion: The SHM during the passive motion without muscle contraction in the non-weighted bearing appeared in the entire range. We thought that the MEMSS could be easily applied to the acquisition of biomechanical data on the knee related to physical therapy.

초소형 스퍼기어 제조를 위한 초소성 Al-78Zn 분말 압출 (Powder extrusion with superplastic Al-78Zn powders for micro spur gears)

  • 이경훈;김진우;황대원;김종현;장석상;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.387-390
    • /
    • 2009
  • This study was designed to fabricate the micro-electro-mechanical systems (MEMS) parts such as micro spur gears using hot extrusion of gas atomized Al-78Zn powders. For this purpose, it is important to develop new methods to fabricate micro-dies and choose suitable extrusion conditions for a micro-forming. Micro-dies with Ni were fabricated by LIGA technology. LIGA technology was capable to produce micro-extrusion dies with close tolerances, thick bearing length and adequate surface quality. Superplastic Al-78Zn powders have the great advantage in achieving deformation under low stresses and exhibiting good micro formability with average strain rates ranging from $10^{-3}$ to $10^{-2}\;s^{-1}$ and constant temperatures ranging from 503 to 563K. Al-78Zn powders were compacted into a cylindrical shape (${\Phi}3{\times}h10$) under compressive force of 10kN and, subsequently, the compacted powders were extruded at 563k in a hot furnace. Micro-extrusion has succeeded in forming micro-gear shafts.

  • PDF

Slip flow 영역에서 Navier Stokes 방정식의 해석 연구 (Solutions of the Navier-Stokes equation in slip flow region)

  • 박원희;김태국
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.597-602
    • /
    • 2000
  • In a MEMS(micro-electro mechanical system), the fluid may slip near the surface of a solid and have a discontinuous temperature profile. A numerical prediction in this slip flow region can provide a reasonable guide for the design and fabrication of micro devices. The compressible Navier-Stokes equation with Maxwell/smoluchowski boundary condition is solved for two simple systems; couette flow and pressure driven flow in a long channel. We found that the couette flow could be regarded as an incompressible system in low speed regions. For the pressure driven flow system, we observed nonlinear distribution of pressure in the long channel and numerical results showed a good agreement with the experimental results.

  • PDF

Consumable Approaches of Polysilicon MEMS CMP

  • Park, Sung-Min;Jeong, Suk-Hoon;Jeong, Moon-Ki;Park, Boum-Young;Jeong, Hae-Do;Kim, Hyoung-Jae
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권4호
    • /
    • pp.157-162
    • /
    • 2006
  • Chemical-mechanical polishing (CMP), one of the dominant technology for ULSI planarization, is used to flatten the micro electro-mechanical systems (MEMS) structures. The objective of this paper is to achieve good planarization of the deposited film and to improve deposition efficiency of subsequent layer structures by using surface-micromachining process in MEMS technology. Planarization characteristic of poly-Si film deposited on thin oxide layer with MEMS structures is evaluated with different slurries. Patterns used for this research have shapes of square, density, line, hole, pillar, and micro engine part. Advantages of CMP process for MEMS structures are observed respectively by using the test patterns with structures larger than 1 urn line width. Preliminary tests for material selectivity of poly-Si and oxide are conducted with two types of silica slurries: $ILD1300^{TM}\;and\;Nalco2371^{TM}$. And then, the experiments were conducted based on the pretest. A selectivity and pH adjustment of slurry affected largely step heights of MEMS structures. These results would be anticipated as an important bridge stone to manufacture MEMS CMP slurry.

초소형 가스터빈엔진 열전달 현상의 수치적 및 실험적 연구 (Numerical and Experimental Analysis of Micro Gas Turbine Heat Transfer Effect)

  • 서준혁;권길성;최주찬;백제현
    • 대한기계학회논문집B
    • /
    • 제39권2호
    • /
    • pp.153-159
    • /
    • 2015
  • 본 연구에서는 MEMS기술을 적용한 2W급 초소형 가스터빈엔진의 개발과 실제 연소 환경에서의 발전 가능성을 해석적, 실험적으로 입증하였다. 초소형 가스터빈엔진은 터보차저, 연소기, 발전기로 이루어져 있다. 터보차저는 각각 직경 10mm와 9mm의 MEMS 공정 압축기와 터빈으로 구성되어 있으며 발전코일 또한 MEMS공정으로 설계되었다. 제작된 압축기와 터빈은 정밀 기계 가공된 축과 공기 베어링으로 지지되고 회전하며, 회전축 끝단에 영구자석을 설치하여 발전을 하게 된다. 공기 베어링과 압축기를 통한 냉각 효과를 해석하여 연소기에서 발생한 열을 충분히 차단할 수 있는 것으로 분석되었고, 이를 실험을 통해 검증하였다.

Vibration analysis of double-bonded sandwich microplates with nanocomposite facesheets reinforced by symmetric and un-symmetric distributions of nanotubes under multi physical fields

  • Mohammadimehr, Mehdi;Zarei, Hassan BabaAkbar;Parakandeh, Ali;Arani, Ali Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • 제64권3호
    • /
    • pp.361-379
    • /
    • 2017
  • In this article, the vibration behavior of double-bonded sandwich microplates with homogeneous core and nanocomposite facesheets reinforced by carbon nanotube and boron nitride nanotube under multi physical fields such as 2D magnetic and electric fields is investigated. Symmetric and un-symmetric distributions of nanotubes are considered for facesheets of sandwich microplates such as uniform distribution and various functionally graded distributions. The double-bonded sandwich microplates rest on visco-Pasternak foundation. Material properties of sandwich microplates are obtained by the extended rule of mixture. The sinusoidal shear deformation theory (SSDT) is employed to describe displacement fields of sandwich microplates. Also, the dimensionless natural frequency is obtained by classical plate theory (CPT) and compared with the obtained results by SSDT. It can be seen that the obtained dimensionless natural frequencies by CPT are higher than SSDT. In order to study the material length scale parameters, modified strain gradient theory at micro scale is utilized and then, the equations of motion are derived using Hamilton's principle. The effects of different parameters such as foundation parameters including Winkler, shear layer and damping coefficients, various distributions and volume fraction of nanotubes, core to facesheet thickness ratio, aspect and side ratios on the dimensionless natural frequencies are discussed in details. The results of present work can be used to optimum design and control of similar systems such as micro-electro-mechanical and nano-electro-mechanical devices.