• 제목/요약/키워드: Micro strength

검색결과 1,201건 처리시간 0.031초

An experimental study on strength of hybrid mortar synthesis with epoxy resin, fly ash and quarry dust under mild condition

  • Sudheer, P.;Muni Reddy, M.G.;Adiseshu, S.
    • Advances in materials Research
    • /
    • 제5권3호
    • /
    • pp.171-179
    • /
    • 2016
  • Fusion and characterization of bisphenol-A diglycidyl ether based thermosetting polymer mortars containing an epoxy resin, Fly ash and Rock sand are presented here for the Experimental study. The specimens have been prepared by means of an innovative process, in mild conditions, of commercial epoxy resin, Fly ash and Rock sand based paste. In this way, thermosetting based hybrid mortars characterized by a different content of normalized Fly ash and Rock sand by a homogeneous dispersion of the resin have been obtained. Once hardened, these new composite materials show improved compressive strength and toughness in respect to both the Fly ash and the Rock sand pastes since the Resin provides a more cohesive microstructure, with a reduced amount of micro cracks. The micro structural characterization allows pointing out the presence of an Interfacial Transition Zone similar to that observed in cement based mortars. A correlation between micro-structural features and mechanical properties of the mortar has also been studied.

Micro-TEM Cell을 사용한 표준 전자기장의 발생 및 측정불확도 평가 (Standard Field Generation Using a Micro-TEM Cell and Its Measurement Uncertainty Evaluation)

  • 강진섭;김정환;강웅택;강노원;강태원
    • 한국전자파학회논문지
    • /
    • 제20권1호
    • /
    • pp.91-99
    • /
    • 2009
  • 본 논문에서는 micro-TEM cell을 사용한 표준 전자기장 발생법을 기술하고 측정불확도를 평가하였다. 표준 전자기장 발생 시스템은 auto-leveling 기능을 가진 신호발생부, 최대 1.2 GHz까지 동작하는 micro-TEM cell, 서미스터 마운트를 사용한 전력측정부로 구성된다. 표준 전자기장 발생법의 타당성을 보이기 위해 $10\;MHz{\sim}1\;GHz$ 대역에서 전자기장의 세기 20 V/m에 대해 실시된 전자기장의 세기 국제비교(CCEM.RF-K20)의 참여 결과를 제시하였다.

Evaluation of mechanical properties for high strength and ultrahigh strength concretes

  • Murthy, A. Ramachandra;Iyer, Nagesh R.;Prasad, B.K. Raghu
    • Advances in concrete construction
    • /
    • 제1권4호
    • /
    • pp.341-358
    • /
    • 2013
  • Due to fast growth in urbanisation, a highly developed infrastructure is essential for economic growth and prosperity. One of the major problems is to preserve, maintain, and retrofit these structures. To meet the requirements of construction industry, the basic information on all the mechanical properties of various concretes is essential. This paper presents the details of development of various concretes, namely, normal strength concrete (around 50 MPa), high strength concrete (around 85 MPa) and ultra high strength concrete (UHSC) (around 120 MPa) including their mechanical properties. The various mechanical properties such as compressive strength, split tensile strength, modulus of elasticity, fracture energy and tensile stress vs crack width have been obtained from the respective test results. It is observed from the studies that a higher value of compressive strength, split tensile strength and fracture energy is achieved in the case of UHSC, which can be attributed to the contribution at different scales viz., at the meso scale due to the fibers and at the micro scale due to the close packing of grains which is on account of good grading of the particles. Micro structure of UHSC mix has been examined for various magnifications to identify the pores if any present in the mix. Brief note on characteristic length and brittleness number has been given.

SWOT분석을 통한 한국 마이크로 로봇의 발전방안 (The Study of SWOT(Strength-Weakness-Opportunity-Threat) Analysis for Micro-robot Technology Development and Trend of S. Korea)

  • 이상윤;윤홍주
    • 한국전자통신학회논문지
    • /
    • 제7권4호
    • /
    • pp.881-895
    • /
    • 2012
  • 마이크로 로봇은 인간의 다양한 질병과 진단에 있어 유용한 도구로서 활용이 가능한데, 이러한 이유로 현재 세계의 많은 국가들은 마이크로 로봇의 제작과 개발에 관심을 기울이고 있다. 한국정부 역시 이러한 세계적 추세 속에서, 마이크로 로봇 개발에 대한 기술정책을 만들고 많은 노력을 하고 있다. 따라서 본고는 SWOT분석을 통해, 한국의 마이크로 로봇 기술동향과 개발현황을 분석하여 미래 한국의 마이크로 로봇에 대한 가장 합당한 발전방안을 모색한다. 연구결과, '박테리아 기반기술의 마이크로 로봇(C형-2)'과 '무배터리 자체추진기 자율이동 마이크로 로봇(C형-3)'과 같은, 한국에서 관련 최신 특허로 등록받은 마이크로 로봇에 대한 보다 집중적인 지원이 필요하며, 이 양 분야 모두 현재 세계적인 수준으로 성장하고 있으므로 지원 중인 마이크로 로봇 개발에 관한 예산을 더욱 늘리는 한편 보다 적극적으로 관련 기술개발을 추진해야 한다.

차체 구조용 에폭시 접착제의 접합강도에 미치는 나노 기능성 블록공중합체 첨가의 영향 (The Effect of Nano Functionalized Block Copolymer Addition on the Joint Strength of Structural Epoxy Adhesive for Car Body Assembly)

  • 이혜림;이소정;임창용;서종덕;김목순;김준기
    • Journal of Welding and Joining
    • /
    • 제33권4호
    • /
    • pp.44-49
    • /
    • 2015
  • The structural epoxy adhesive used in car body assembly needs the highest level of joint mechanical strength under lap shear, T-peel and impact peel conditions. In this study, the effect of nano functionalized block copolymer addition on the impact peel strength of epoxy adhesive was investigated. DSC analysis showed that the addition of nano functionalized block copolymer did not affect the curing reaction of epoxy adhesive. From single lap shear test, it was found out that the addition of nano functionalized block copolymer slightly decreased the cohesive strength of cured adhesive layer. The addition of nano functionalized block copolymer showed beneficial effect on T-peel strength by changing the adhesive failure mode to the mixed mode. However, the addition of nano functionalized block copolymer just decreased the room temperature impact peel strength. It was considered that the addition of nano functionalized block copolymer could have effect on disturbing the crack propagation only for the case of slow strain rate.

고강도 DP강과 TRIP강의 표면 수소 주입량에 따른 수소취성평가 (The Change of Microstructures According to the Charging Amounts of Hydrogen in High Strength DP Steels and TRIP Steel)

  • 이철치;박재우;강계명
    • 한국표면공학회지
    • /
    • 제45권3호
    • /
    • pp.130-135
    • /
    • 2012
  • Hydrogen charging was electrochemically conducted at high strength DP steels and TRIP steel with varying charging time. The penetration depths and the mechanical properties with charging conditions were investigated through the distribution of micro-hardness and the microstructural observation of the subsurface zone. The micro-Vickers hardness was measured to evaluate the hydrogen embrittlement of subsurface zone in addition to the microscope investigation. It was shown that the hydrogen amounts decreased in DP steels and TRIP steel with increasing hydrogen charging time. As shown by micro-Vickers hardness test and small punch test results, micro-Vickers hardness and SP energy for DP steels and TRIP steel decreased with increasing hydrogen charging time, for constant value of charging current density. SEM investigation results for the hydrogen contained samples showed that the major fracture behavior was brittle fracture which results in dimples on fractured surface and the size of dimples were decreased with increasing hydrogen charging time. These results indicate that hydrogen embrittlement is the major cause for the fracture of high strength steels and also micro-Vickers hardness test and small punch test is a valuable test method for hydrogen embrittlement of high strength sheet steels.

Experimental and numerical studies of the pre-existing cracks and pores interaction in concrete specimens under compression

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • 제23권5호
    • /
    • pp.479-493
    • /
    • 2019
  • In this paper, the interaction between notch and micro pore under uniaxial compression has been performed experimentally and numerically. Firstly calibration of PFC2D was performed using Brazilian tensile strength, uniaxial tensile strength and biaxial tensile strength. Secondly uniaxial compression test consisting internal notch and micro pore was performed experimentally and numerically. 9 models consisting notch and micro pore were built, experimentally and numerically. Dimension of these models are 10 cm*1 cm*5 cm. the length of joint is 2 cm. the angularities of joint are $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$. For each joint angularity, micro pore was situated 2 cm above the lower tip of the joint, 2 cm above the middle of the joint and 2 cm above the upper of the joint, separately. Dimension of numerical models are 5.4 cm*10.8 cm. The size of the cracks was 2 cm and its orientation was $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$. Diameter of pore was 1cm which situated at the upper of the notch i.e., 2 cm above the upper notch tip, 2 cm above the middle of the notch and 2 cm above the lower of the notch tip. The results show that failure pattern was affected by notch orientation and pore position while uniaxial compressive strength is affected by failure pattern.

여러 종류의 에폭시/이종무기물 혼합 콤포지트의 전기적 교류 절연파괴 특성 (Electrical AC Insulation Breakdown Characteristics of Various Epoxy / Heterogeneous Inorganic Mixed Composite)

  • 박재준
    • 전기학회논문지
    • /
    • 제67권11호
    • /
    • pp.1463-1470
    • /
    • 2018
  • In this study, 20 types of samples were prepared by mixing different kinds of inorganic materials to develop insulation materials for epoxy - based GIS substation equipment used under high voltage environmentally friendly insulation gas. One of the electrical characteristics, AC insulation breakdown experiment was performed. As mixing ratio of mixed heterogeneous inorganic materials, the dielectric breakdown strength was increased with increasing filler ratio of micro silica, micro silica : micro Alumina, 1:9, 3:7, 5:5, 7:3, 9:1, and decreased as the filling amount of micro alumina increased. The AC insulation breakdown characteristics were the best when the composition ratio was 9:1. The higher the content of silica, the better the interfacial properties, and the larger the alumina content ratio, the worse the interfacial properties.

ESPI 기법을 이용한 동 박막의 인장 특성 측정 (Measurement of Tensile Properties of Copper foil using ESPI technique)

  • 권동일;허용학;김동진;박준협;기창두
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1059-1062
    • /
    • 2003
  • Micro-tensile testing system has been developed and micro-tensile tests for copper foil have been carried out. The system consisted of a micro tensile loading system and a micro-ESPI system for measuring strain. The loading system has a maximum loading capacity of 50N and a stroke resolution of 4.5nm. Stress-strain curves for the electro-deposited copper foil with the thickness of 18$\mu\textrm{m}$ were obtained, and tensile properties, including elastic modulus, yielding strength and tensile strength, were determined. The tensile properties obtained under three different conditions of testing speed showed a dependency on the speed.

  • PDF

The Properties of DSC and DMA for Epoxy Nano-and-Micro Mixture Composites

  • Lee, Chang-Hoon;Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권2호
    • /
    • pp.69-72
    • /
    • 2010
  • This study investigates the thermal and mechanical properties of insulation elements through the mixing of epoxy based micro and nano particles. Regarding their thermal properties, differential scanning calorimeter and dynamic mechanical analyser were used to calculate the cross-linking densities for various types of insulation elements. The mechanical properties of the bending strength, the shape and scale parameters, were obtained using the Weibull plot. This study obtained the best results in the scale parameters, at 0.5 phr, for the bending strength of the epoxy nano-and-micro mixture composites.