• Title/Summary/Keyword: Micro robot

Search Result 184, Processing Time 0.028 seconds

Development of Autonomous Decentralized Control System Simulator using Micro Mobile Robot (소형 이동로봇을 이용한 자율 분산제어용 시뮬레이터의 개발)

  • 이재동;정해용;김상봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.323-326
    • /
    • 1995
  • During a fast decade, an automatic control technology makes an aggressive improvement with the developments of computer and communication technology. In large scale and complicated systems, an autonomous decentralized control system is required in which the sub-systems must have some ability such that the self-judgement and self-performance functions. In this paper, we propose an algorithm to realized these functions using micro mobile robot which is applied to a control of a werehouse. The proposed algorithm is based on performance index, and the selecting rules of the task between the sub-systems are induced by the index. Also, it is effected by weighting function which is determined by environment and kind of works. To verify the effectiveness of this algorithm, we develop the simulator to implement the autonomous decentralized control and apply to the micro mobile robot on the PC machine.

  • PDF

Planning a Minimum Time Path for Multi-task Robot Manipulator using Micro-Genetic Algorithm (다작업 로보트 매니퓰레이터의 최적 시간 경로 계획을 위한 미소유전알고리즘의 적용)

  • 김용호;심귀보;조현찬;전홍태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.4
    • /
    • pp.40-47
    • /
    • 1994
  • In this paper, Micro-Genetic algorithms($\mu$-GAs) is proposed on a minimum-time path planning for robot manipulator. which is a kind of optimization algorithm. The minimum-time path planning, which can allow the robot system to perform the demanded tasks with a minimum execution time, may be of consequence to improve the productivity. But most of the methods proposed till now suffers from a significant computation burden and can`t often find the optimaul values. One way to overcome such difficulties is to apply the Micro-Genetic Algorithms, which can allow to find the optimul values, to the minimum-time problem. This paper propose an approach for solving the minimum-time path planning by using Micro-Genetic Algorithms. The effectiveness of the proposed method is demonstrated using the 2 d.o.f plannar Robot manipulator.

  • PDF

Development of War-robot using Real-Time Sensing and 4-bar linkage (Real-Time Sensing 및 4-bar linkage를 이용한 격투기로봇 개발)

  • 최은재;박세환;임상헌;정진만;정원지
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.873-876
    • /
    • 2001
  • Micro-robots using microprocessor are mainly classified as line-tracer, micro-mouse, and war-robot. This paper presents the development of the war-robot mechanism with vehicle-style using RC-servo motors and actuators using 4-bar linkage and infrared sensors. Especially the algorithm of conquering other war-robots is proposed based on the skill of belly-throw of Korean wrestling.

  • PDF

FPGA Based Micro Step Motor Driver

  • Uk, Cho-Jung;Wook, Jeon-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.111.3-111
    • /
    • 2001
  • Automative system and robot are operated by motor. Recently, automative system and robot need correct operation and control for precise task. Therefore they need precise motor control technology. In present, controller needs precise motor control technology in automative system and robot. Usual step motor driver that has 200 steps per revolution is not proper. So we need micro step motor driver that is more precise then usual step motor driver. In this paper, micro step motor driver is used for precise control of step motor. The goal is precise operation and location control. This micro step motor driver is A3972SB that is made in Alloegro Company. It has serial port that receives two 6-bits linear DAC value. Almost all systems generate DAC value with micro processer and ...

  • PDF

A Force/Moment Direction Sensor and Its Application in Intuitive Robot Teaching Task

  • Park, Myoung-Hwan;Kim, Sung-Joo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.236-241
    • /
    • 2001
  • Teach pendant is the most widely used means of robot teaching at present. Despite the difficulties of using the motion command buttons on the teach pendant, it is an economical, robust, and effective device for robot teaching task. This paper presents the development of a force/moment direction sensor named COSMO that can improve the teach pendant based robot teaching. Robot teaching experiment of a six axis commercial robot using the sensor is described where operator holds the sensor with a hand, and move the robot by pushing, pulling, and twisting the sensor in the direction of the desired motion. No prior knowledge of the coordinate system is required. The function of the COSMO sensor is to detect the presence f force and moment along the principal axes of the sensor coordinate system. The transducer used in the sensor is micro-switch, and this intuitive robot teaching can be implemented at a very low cost.

  • PDF

A Study on Risk Response against Ship Fire using Robot

  • Park, Dea-Woo;Park, Young-Suk;Nam, Jae-Min
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.2
    • /
    • pp.230-234
    • /
    • 2011
  • It is endeavoring for sea safety and fire[1] at sea prevention solidifying control of standard technology and safety supervision aspect in IMO[2] but sea accident and ship fire are happening continuously. Because using Robot in artistic talent of ship in this treatise, studied that correspond to Risk and manage. Attach fire perception sensor for Robot's Risk confrontation, and because using infrared rays sensor, TOUCH SWITCH, sound perception sensor, gas perception sensor, light perception sensor that is threaded in Robot and is achieved, controlled Robot, and establish Low-High value the speed of sound output use and DC MOTOR and COM SEN of when indicate Risk confrontation to Robot and establish Robot's Risk confrontation administration action.

Planning a minimum time path for robot manipulator using genetic algorithm (유전알고리즘을 이용한 로보트 매니퓰레이터의 최적 시간 경로 계획)

  • Kim, Yong-Hoo;Kang, Hoon;Jeon, Hong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.698-702
    • /
    • 1992
  • In this paper, Micro-Genetic algorithms(.mu.-GAs) is proposed on a minimum-time path planning for robot manipulator, which is a kind of optimization algorithm. The minimum-time path planning, which can allow the robot system to perform the demanded tasks with a minimum execution time, may be of consequence to improve the productivity. But most of the methods proposed till now suffers from a significant computation burden and can't often find the optimal values. One way to overcome such difficulties is to apply the Micro-Genetic Algorithms, which can allow to find the optimal values, to the minimum-time problem. This paper propose an approach for solving the minimum-time path planning by using Micro-Genetic Algorithms. The effectiveness of the proposed method is demonstrated using the 2 d.o.f plannar Robot manipulator.

  • PDF

The Development of High Precision Manipulator and Micro Gripper (미세 작업을 위한 마이크로-나노 로봇개발)

  • Lee, Jong-Bae;Park, Chang-Woo;Kim, Bong-Seok;Park, Jun-Sik;Sung, Ha-Gyeong
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.1
    • /
    • pp.64-70
    • /
    • 2007
  • In this paper, a robotic system which consists of a precision manipulator and a micro gripper for a micro system assembly is presented. By the experiment, we proved that the developed the system gives acceptable performance when minute operations. Developed the micro-nano robot is actuated by newly proposed modular revolute and prismatic actuators. As an end-effector of this system, micro gripper is designed and fabricated with MEMS technology and the displacement of jaw is up to 142.8 micro meter. We think that new robot system will be appropriate for micro system assembly tasks and life science application.

  • PDF

Collaborative Control Method of Underwater, Surface and Aerial Robots Based on Sensor Network (센서네트워크 기반의 수중, 수상 및 공중 로봇의 협력제어 기법)

  • Man, Dong-Woo;Ki, Hyeon-Seung;Kim, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.135-141
    • /
    • 2016
  • Recently, the needs for the development and application of marine robots are increasing as marine accidents occur frequently. However, it is very difficult to acquire the information by utilizing marine robots in the marine environment. Therefore, the needs for the researches of sensor networks which are composed of underwater, surface and aerial robots are increasing in order to acquire the information effectively as the information from heterogeneous robots has less limitation in terms of coverage and connectivity. Although various researches of the sensor network which is based on marine robots have been executed, all of the underwater, surface and aerial robots have not yet been considered in the sensor network. To solve this problem, a collaborative control method based on the acoustic information and image by the sonars of the underwater robot, the acoustic information by the sonar of the surface robot and the optical image by the camera of the static-floating aerial robot is proposed. To verify the performance of the proposed method, the collaborative control of a MUR(Micro Underwater Robot) with an OAS(Obstacle Avoidance Sonar) and a SSS(Side Scan Sonar), a MSR(Micro Surface Robot) with an OAS and a BMAR(Balloon-based Micro Aerial Robot) with a camera are executed. The test results show the possibility of real applications and the need for additional studies.

Micro soccer-playing robot based on the centralized approach (중앙집중 제어에 근거한 마이크로 축구경기 로봇)

  • ;;;Sugisaka, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.621-624
    • /
    • 1997
  • This paper presents the design procedure for soccer-playing rovots based on the centralized approach. Using a fast vision system, we obtain the configuration of each robot and then the host computer computes the desired motion and commands each robot directly via RF communication. The robot soccer game has a lot of problems such as obstacle avoidance, coordination between robots, dribbling the ball, and so on. To implement such motions, we think that the centralized approach seems to be more powerful than the distributed approach. We describe the technical tips for developing the robots in detail here and explain our strategy for getting the scores.

  • PDF