• Title/Summary/Keyword: Micro punch

Search Result 59, Processing Time 0.023 seconds

Variation of microstructures and mechanical properties of hot heading process of super heat resisting alloy Inconel 718 (초내열 합금 Inconel 718 열간 헤딩 공정에서의 조직 및 기계적 특성 변화)

  • Choi, Hong-Seok;Ko, Dae-Chul;Kim, Byung-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1373-1378
    • /
    • 2007
  • Metal forming ins the process changing shapes and mechanical properties of the workpiece without initial material reduction through plastic deformation. Above all, because of hot working carried out above recrystallization temperature can be generated large deformation with one blow, it can produce with forging complicated parts or heat resisting super alloy such as Inconel 718 has the worst forgeability. In this paper, we established optimal variation of hot heading precess of the Inconel 718 used in heat resisting component and evaluated mechanical properties hot worked produce. Die material is SKD61 and initial temperature is $300^{\circ}C$. Initial billet temperature and punch velocity changed, relatively. Friction coefficient is 0.3 as lubricated condition of hot working. CAE is carried out suing DEFORM software before making the tryout part, and it is manufactured 150 ton screw press with optimal condition. It is known that forming load was decreased according to decreasing punch velocity.

  • PDF

Preparation of Reproducible and Responsive Scar Model and Histology Analysis

  • Kim, Sang-Cheol;ChoLee, Ae-Ri
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.1
    • /
    • pp.45-49
    • /
    • 2010
  • Unlike human, with some exceptions, animals do not heal with excessive scar. The lack of suitable animal model has hindered the development of effective scar therapy. We previously reported that partial thickness rabbit ear wound model resembles human wound heal process. This study was designed to prepare a hypertropic scar wound model which can be employed for testing anti-scar therapy. Four wounds were created down to the bare cartilage on the anterior side of each rabbit ear using 8-mm dermal biopsy punch and histology analysis at post operation day (POD) 5, 28 and 48 were performed. As the outcome of scar formation is largely determined by the early inflammatory response to the wounding and the degree and the duration of occlusion, cephalodin(50 mg/kg) was injected daily and medical occlusive dressings were applied. Five micro wound and scar sections were stained with hematoxylin and eosin for quantification of epidermal regeneration and scar hypertrophy. Sections were also stained using Masson's trichrome and Sirius red to evaluate collagen organization and rete ridge formation. Wound closure process was assessed to 7wks post wounding. Complete removal of the epidermis, dermis and perichondrial layer caused delayed epithelialization, which results in hypertropic scarring. The inability of the wounds to contract and the delay in epithelialization in rabbit ear was likely due to cartilage and it created scar elevation. The results suggest that full thickness surgical punch wound model in rabbit ear could be employed as a reliable and reproducible scar wound model for testing anti-scar therapy.

Evaluation of Fracture Toughness and AE Characteristics in Functionally Gradient Material by means of MSP Test (MSP 시험법에 의한 경사기능재료의 파괴인성 및 AE 특성 평가)

  • 송준희;임재규;정세희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.631-638
    • /
    • 1995
  • In this study, mechanical characteristics test of Functionally Gradient Materia (FGM) was performed by means of Modified Small Punch (MSP) Test with FGM; NiCrAlY-8YSZ and PSZ-Ni. To determine fracture mechanic factor, it was carried out MSP test that has possibility with small specimen (10*10*0.5 mm$^{t}$ ) and AE test to analyze micro fracture mechanism. As a result, fracture behavior became varied from brittle fracture to ductile as the content of Ni(or NiCrAlY) composition was increased and fracture energy was increased too. AE characteristics demonstrated that AE technique can detect the onset of fracture processes and AE energy was suddenly increased in the vicinity of maximum load. Since Young's modulus, fracture stress and fracture toughness was determined by MSP test, it can be known that the composition of NiCrAly 75%/8YSZ25% has the best mechanical property and furthermore this result is supported with fracture surface observation.

Development and its Performance Evaluation of a Micro-Impression Creep Machine (마이크로 압입 크리프 시험기 개발 및 성능평가)

  • Yang, Kyoung-Tak;Kim, Hyun-Jun;Kim, Ho-Kyung
    • Tribology and Lubricants
    • /
    • v.24 no.1
    • /
    • pp.27-33
    • /
    • 2008
  • A micro-impression creep machine was designed and developed, adopting a small punch in diameter of 150 um, displacement gage with an accuracy of sub-${\mu}m$ scale, and load-cell with an accuracy of mN scale in order to investigate creep behavior of small solder ball in diameter of less than 1 mm. Creep behavior of lead-free solder ball(Sn-3.0Ag-0.5Cu) in diameter of $760\;{\mu}m$ was investigated in the stress range of $8{\sim}60\;MPa$ and at $303\;K{\sim}393\;K$. The applied load became decreased slightly and continuously in the creep rate of $10^{-4}/s$ range during the current experiments. Also, the machine frame was so sensitive to the environmental temperature that nm scaled displacement recording was unstable according to the change in environmental temperature.

Experimental and Numerical Analyses of Flexible Forming Process for Micro Channel Arrays of Fuel Cell Bipolar Plates (연료전지 분리판의 마이크로 채널 제작을 위한 가변성형공정의 실험적 및 수치적 연구)

  • Kim, H.S.;Shim, J.M.
    • Transactions of Materials Processing
    • /
    • v.21 no.8
    • /
    • pp.499-505
    • /
    • 2012
  • The fuel cell is a very promising power generation system combining the benefits of extremely low emissions, high efficiency, ease of maintenance and durability. In order to promote the commercialization of fuel cells, a flexible forming process, in which a hyper-elastic rubber is adopted as a medium to transmit forming pressure, is suggested as an efficient and cost effective manufacturing method for fuel cell bipolar plates. In this study, the ability of this flexible forming process to produce the micro channel arrays on metallic bipolar plates was first demonstrated experimentally. Then, a finite element (FE) model was built and validated through comparisons between simulated and experimental results. The effects of key process parameters on the forming performance such as applied load and punch velocity were investigated. As a result, appropriate process parameter values allowing high dimensional accuracy without failure were suggested.

Electrochemical Machining of Tungsten Carbide Microshaft (텅스텐 카바이드 미세축의 전해가공)

  • Lee, Kang-Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.370-375
    • /
    • 2010
  • Tungsten carbide microshaft is used as micro punch, electrode of micro electro discharge machining, and micro tool because of its high hardness and rigidity. In this research, tungsten carbide microshaft was fabricated using electrochemical machining. $H_2SO_4$ solution was used as the electrolyte because it can dissolve tungsten carbide and cobalt simultaneously. Experimentally studied were the effects of electrolyte concentration, machining time, and machining voltage on material removal rate and the shape of the microshaft. To eliminate the effects of bubbles and metal corrosion layer on microshaft shape, the machining was performed below the electrolysis voltage. Three step electrochemical process was suggested to fabricate the straight tungsten carbide microshaft. As a result, a straight tungsten carbide microshaft of $30{\mu}m$ in diameter and $500{\mu}m$ in length was obtained through the proposed three step electrochemical process.

Evaluation of Punching Process Variables Influencing Micro Via-hole Quality of LTCC Green Sheet (LTCC 기판의 미세 비아홀 펀칭 중 공정 변수의 영향 평가)

  • Baek S. W.;Rhim S. H.;Oh S. I.
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.277-281
    • /
    • 2005
  • LTCC(Low temperature co-fired ceramic) is being recognized as a significant packaging material of electrical devices for the advantages such as relatively low temperature being needed for process, low conductor resistance and high printing resolution. In the process of LTCC electrical devices, the punched via-hole quality is one of the most important factors on the performance of the device. However, its mechanism is very complicated and optimization of the process seems difficult. In this paper, to clarify the process, via-hole punching experiments were carried out and the punched holes were examined in terms of their burr formation. The effects of thickness of PET sheet, ceramic sheet and punch-to- die clearance on via-hole quality were also discussed. Optimum process conditions are proposed and a factor $\kappa$ is introduced to express effect of the process variables.

Press and Die Deformation for a Precise Semiconductor Lead Frame (반도체 산업의 정밀리드프레임에 대한 프레스 및 금형 변형 예측)

  • Hong, S.;Yoon, Y.;Eom, S.;Hwang, J.;Lee, D.
    • Transactions of Materials Processing
    • /
    • v.23 no.4
    • /
    • pp.206-210
    • /
    • 2014
  • The metal lead frame, a semiconductor component, has product tolerances in micro units as compared to products made with a larger size mold. Therefore, small deflections of the mold and of the press as well as the press molding process itself have a strong influence on accuracy of the product. Hence, it is necessary for the process design to consider the structural response of the mold and the press during deformation. In the current study, the mold deflection and pressure on the punch is examined using the finite element modeling (FEM) program ABAQUS. The results from the simulation were verified with the dynamic deformation measurement equipment using digital image correlation (DIC).

A Study on Mechanical Properties for Pb-free Solders of Electronic Packages (전자부품의 Pb-free 솔더에 대한 기계적 특성에 관한 연구)

  • 허우진;백승세;정영훈;권일현;양성모;유효선
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.83-85
    • /
    • 2003
  • This paper is investigated the shear strength by using the micro shear-punch test method for Sn-37Pb alloy, binary and ternary alloys of environment-friendly Pb-free solder alloys which would be surely applicable to the electronic packages. As a result, in case of Max. shear strength, Sn-4Ag-0.5Cu has the highest value and Sn-37Pb has the lowest value on every condition of experiment temperature. Also, In case of Pb-free solder joint specimens, it was found that Pb-free solder alloys have higher value of shear strength than eutectic Sn-Pb solder alloy and Sn-4Ag-0.5Cu has the highest value.

  • PDF

Degradation Degree Evaluation of Heat Resisting Steel by Electrochemical Technique Part 2 : Effect of Testing Conditions on Evaluation Value of Degradation Degree and Changes of Mechaical Properties (전기화학적 방법에 의한 내열강의 열화도측정 제2보 : 열화도측정치에 미치는 측정조건들의 영향과 기계적성질 변화에 대해서)

  • 정희돈;권영각;장래웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.300-312
    • /
    • 1993
  • The material deterioration of service-exposed boiler tube steels in fossil power plant was evaluated by using the electrochemical technique namely, modified electrochemical potentiokinetic reactivation(EPR). It was focused that the passivation of Mo$_{6}$C carbide which governs the mechanical properties of Mo alloyed steels did not occur even in the passivity region of steel in sodium molybdate solution and the reactivation peak current (Ip) observed as the result of non-passivation indicating the precipitation of Mo$_{6}$C carbides. To obtain the optimal test conditions for the field test by using the specially designed electrochemical cell, the effects of scan rate, the surface roughness and the pH of electrolyte on Ip value were also investigated. Furthermore, the change of mechanical properties occurred during the long time exposure at high temperature was evlauated quantitatively by small punch(SP) tests and micro hardness test taking account of the metallurgical changes. It is known that reactivation peak current (Ip) has a good relationship with Larson-Miller Parameter(LMP) which represents the information about material deterioration occurred at high temperature environment. In addition it was possible to estimate the ductile-brittle transition temperature (DBTT) by means of the SP test. The Sp test could be, therefore, suggested as a reliable test method for evaluating the material degradation of boiler tube steels. From the good correaltion between the SP DBTT and Ip values shown in this study, it was knows that the change of mechanical properties could be evaluated non-destructively by measurring only Ip values.ues.