• Title/Summary/Keyword: Micro punch

Search Result 59, Processing Time 0.028 seconds

Fabrication of Ultrathin Punch by Electrochemical Process (전해 프로세스에 의한 초미세 펀치의 제작)

  • Lim, Hyung-Jun;Lim, Young-Mo;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.792-796
    • /
    • 2000
  • With the development of micro machining, it becomes an important part to fabricate an electrode which has tens of ${\mu}m$ or less. There are two methods to get a narrow hole; non-contact type such as EDM(Electro-discharge machining) and contact type such as punching. A punch which has a tapered shape with a cylindrical tip is fabricated in this paper. To make this punch, a method which was used to fabricate a cylindrical shape by electrochemical process was applied. The control factors for the shape and their limits are verified through an experiment.

  • PDF

Multi-stage forming analysis of milli component for improvement of forming accuracy (밀리부품 성형 정밀도 향상을 위한 다단계 미세성형 해석)

  • Yoon, J.H.;Huh, H.;Kim, S.S.;Choi, T.H.;Na, G.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.97-100
    • /
    • 2003
  • Globally, the various machine components, as in electronics and communications, are demanded to being high-performance and micro-scale with abrupt development of the fields of computers, mobile communications. As this current tendency, production of the parts that must have high accuracy, so called milli-structure, are accomplished by the method of top-down, differently as in the techniques of MEMS, NANO. But, in the case of milli-structure, production procedure is highly costs, difficult and demands more accurate dimension than the conservative forming, processing technique. In this paper, forming analysis of the micro-former as the milli-structure are performed and then calculate the punch force etc. This information calculated is applied to decide the forming capacity of micro-former and design the process of forming stage, dimension of dies in another forming bodies. And, for the better precise forming analysis, elasto-plastic analysis is to be performed, then the consideration about effect of elastic recovery when punch and die are unloaded, have to be discussed in change of dimensions.

  • PDF

Influence of Drawing Speed and Blank Holding Force in Rectangular Drawing of Ultra Thin Sheet Metal (극박판 사각 드로잉에 있어서 드로잉속도와 블랭크홀딩력의 영향)

  • Lee, J.H.;Chung, W.J.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.21 no.6
    • /
    • pp.348-353
    • /
    • 2012
  • Micro-drawn parts have received wider acceptance as products become smaller and more precise. The subject of this study was the deformation characteristics of ultra thin sheet metal in micro drawing of a rectangular shaped part. The influence of drawing speed and blank holding force on the product quality was investigated in micro-drawing of ultra thin sheet of beryllium copper (C1720) alloy. The specimen had a diameter of 4.8 mm and a thickness of $50{\mu}m$. Experiments were carried out in which, different blank holding force and drawing speed were considered. The product quality was evaluated by measuring the thickness and hardness along two specified directions, namely, the side and diagonal directions. The distribution of the thickness strain showed severe thinning especially around the punch radius in both directions. In the diagonal direction, thickening occurred in the flange area due to the axi-symmetric drawing mode. The increase of blank holding force and/or drawing speed was found to cause severe thinning around the punch radius. The blank holding force had a greater effect on thinning of the product than the drawing speed.

Thickness Distribution of Hemispherical Cup in Meso-Scale Deep Drawing Process (반구형 극소 드로인 제품의 두께분포 비교)

  • Lee, K.S.;Jung, H.K.;Kim, J.B.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.1
    • /
    • pp.36-41
    • /
    • 2011
  • Meso-scale or micro-scale forming of sheet metal parts has been recently considered as one of the important forming technologies with growing demand on meso/micro products for electric or medical devices. Experimental investigation on the cylindrical meso-cup drawing with hemispherical punch is carried out to examine the limit drawing ratio and thickness distribution of drawn cups. The working parameters chosen in this study are blank diameter, die-corner radius and blankholding force. It is found from the experiments that the limit drawing ratio of 2.4 can be achieved in the case of hemispherical cup drawing and uniform thickness distribution in wider region can be obtained compared with the results of conventional cup drawing.

Development of Micro Metal Forming Manufacturing System (초미세 마이크로 소성성형 가공시스템 기술 개발)

  • Lee Nak-Kyu;Choi Tae-Hoon;Lee Hye-Jin;Chi Seog-Ou;Park Hoon-Jae;La Won-Ki
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.383-388
    • /
    • 2005
  • In this paper Research development about a micro metal forming manufacturing system has been developed. A micro forming system has been achieved in Japan and it's developed micro press is limited to single forming process. To coincide with the purpose to be more practical, research and development is necessary about the press which the multi forming process is possible. We set the development of the equipment including micro deep drawing, micro punching and micro restriking process to the goal. To achieve this goal, Research about micro forming process to be related to multi process forming must be preceded first. Material selection and analysis about micro forming process are accomplished in this paper. And the basis research to make actual system is accomplished.

  • PDF

A Study on the Burr Minimization in Punching Process Based on Micro Die Alignment (다이의 미세정렬을 통한 전단 버의 최소화에 관한 연구)

  • 홍남표;신용승;신홍규;김헌영;김병희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.70-75
    • /
    • 2004
  • The shearing process for the sheet metal is normally used in the precision elements such as a lead frame of IC chips. In these precision elements, the burr formation brings a bad effect on the system assembly and demands the additional deburring process. In this paper, we developed the small size precision punching system to investigate burr formation mechanism and to present kinematically punch-die aligning methodology between the rectangular shaped punch and die. The punch is driven by an air cylinder and the sheet metal is moving on the X-Y table system which is driven by two stepping motors. The whole system is controlled by microprocessor and is communicated with each other by RS232C serial communication protocol. Punching results are measured manually using the SEM photographs and are compared aligning result with miss aligning one.

A Study on the Micro Forming of Al-based Superplastic Alloy and Zr-BMG for the Cavity Position (Al5083 초소성 합금과 Zr-BMG의 Cavity 위치에 따른 마이크로 성형연구)

  • Son, S.C.;Park, K.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.258-262
    • /
    • 2008
  • Micro forming is a suited technology to manufacture very small metallic parts(several $mm{\sim}{\mu}m$). In this study, the micro forming property was studied, using Al5083 superplastic alloy with micro grain, suitable for the micro forming process and Zr-BMG amorphous with pseudo-superplastic phenomena in the supercooled liquid state. Micro forming experiments under stastic load status showed that distortion by slip and spin of the grain system and slip inside the grain was observed in the Al5083 superplastic alloy. In case of Zr-BMG, because there is no grain, the distribution of the forming property was similar to the load distribution between punch and metal.

  • PDF

Estimation of Fracture Resistance Curves of Nuclear Materials Using Small Punch Specimen (소형펀치 시편을 이용한 원자력 재료의 파괴저항곡선 예측)

  • Chang, Yoon-Suk;Kim, Jong-Min;Choi, Jae-Boong;Kim, Min-Chul;Lee, Bong-Sang;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.70-76
    • /
    • 2007
  • Elastic-plastic fracture mechanics is popularly used for integrity evaluation of major components, however, it is not easy to extract standard specimens from operating facility. This paper examines how ductile fracture toughness is characterized by a small punch testing technique in conjunction with finite element analyses incorporating a damage model. At first, micro-mechanical parameters constituting Rousselier model are calibrated for typical nuclear materials using both estimated and experimental load-displacement (P-$\delta$) curves of miniaturized specimens. Then, fracture resistance (J-R) curves of relatively larger standard CT specimens are predicted by finite element analyses employing the calibrated parameters and compared with corresponding experimental ones. It was proven that estimated results by the proposed method using small punch specimen is promising and might be used as a useful tool for ductile crack growth evaluation.

Optimal Welding Design for FSW Based on Micro Strength by MSP Test (MSP시험의 미세강도에 의한 FSW 최적용접설계)

  • Yang, Sungmo;Kang, HeeYong;Jeong, Byeongho;Yu, Hyosun;Son, Indeok;Choi, Seungjun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.425-431
    • /
    • 2016
  • The usage of Friction Stir Welding(FSW) technology has been increasing in order to reduce the weight in automobile industries. Previous studies that investigated on the FSW have focused on the aluminum alloy. In this study, Al6061-T6 alloy plates having 5 mm of thickness were welded under nine different conditions from three tool rotation speeds: 900, 1000 and 1100 rpm, and three feed rates: 270, 300 and 330 mm/min. Specimen size of Micro Shear Punch(MSP) test was $10{\times}10{\times}0.5mm$. The mechanical properties were evaluated by MSP test and Analysis of Variance (ANOVA). The specimens were classified by advancing side(AS), retreating side(RS), and center(C) of width of tool shoulder. The optimal welding condition of FSW based on micro strengh was obtained when the tool rotation speed was 1100 rpm and the feed rate was 300 mm/min. The maximum load measured AS, RS, and C in the weldment was measured 554.7 N, 642.9 N, and 579.2 N, respectively.

The Change of Microstructures According to the Charging Amounts of Hydrogen in High Strength DP Steels and TRIP Steel (고강도 DP강과 TRIP강의 표면 수소 주입량에 따른 수소취성평가)

  • Lee, Chul-Chi;Park, Jae-Woo;Kang, Kae-Myung
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.3
    • /
    • pp.130-135
    • /
    • 2012
  • Hydrogen charging was electrochemically conducted at high strength DP steels and TRIP steel with varying charging time. The penetration depths and the mechanical properties with charging conditions were investigated through the distribution of micro-hardness and the microstructural observation of the subsurface zone. The micro-Vickers hardness was measured to evaluate the hydrogen embrittlement of subsurface zone in addition to the microscope investigation. It was shown that the hydrogen amounts decreased in DP steels and TRIP steel with increasing hydrogen charging time. As shown by micro-Vickers hardness test and small punch test results, micro-Vickers hardness and SP energy for DP steels and TRIP steel decreased with increasing hydrogen charging time, for constant value of charging current density. SEM investigation results for the hydrogen contained samples showed that the major fracture behavior was brittle fracture which results in dimples on fractured surface and the size of dimples were decreased with increasing hydrogen charging time. These results indicate that hydrogen embrittlement is the major cause for the fracture of high strength steels and also micro-Vickers hardness test and small punch test is a valuable test method for hydrogen embrittlement of high strength sheet steels.